共查询到20条相似文献,搜索用时 15 毫秒
1.
Lizhu Wang John Lyons Paul Kanehl 《Journal of the American Water Resources Association》2002,38(3):663-680
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities. 相似文献
2.
Melissa Vernon Carle Patrick N. Halpin Craig A. Stow 《Journal of the American Water Resources Association》2005,41(3):693-708
ABSTRACT: Urban runoff contributes to nonpoint source pollution, but there is little understanding of the way that pattern and extent of urbanization contributes to this problem. Indicators of type and density of urbanization and access to municipal services were examined in six urban watersheds in Durham, North Carolina. Principal components analysis (PCA) was used to identify patterns in the distribution of these variables across the urban landscape. While spatial variation in urban environments is not perfectly captured by any one variable, the results suggest that most of the variation can be explained using several variables related to the extent and distribution of urban development. Multiple linear regression models were fit to relate these urbanization indicators to total phosphorus, total kjeldahl nitrogen, total suspended solids, and fecal coliforms. Development density was correlated to decreased water quality in each of the models. Indicators of urbanization type such as the house age, amount of contiguous impervious surface, and stormwater connectivity explained additional variation. In the nutrient models, access to city services was also an important factor. The results indicate that while urbanization density is important in predicting water quality, indicators of urbanization type and access to city services help explain additional variation in the models. 相似文献
3.
Daniel L. Tufford Carmen L. Samarghitan Hank N. McKellar Dwayne E. Porter James R. Hussey 《Journal of the American Water Resources Association》2003,39(2):301-312
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas. 相似文献
4.
Lizhu Wang John Lyons Paul Kanehi Roger Bannerman Edward Emmons 《Journal of the American Water Resources Association》2000,36(5):1173-1189
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis. 相似文献
5.
Dan Binkley George G. Ice Jason Kaye Christopher A. Williams 《Journal of the American Water Resources Association》2004,40(5):1277-1291
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies. 相似文献
6.
Colin W. Krause Brendan Lockard Tammy J. Newcomb David Kibler Vinod Lohani Donald J. Orth 《Journal of the American Water Resources Association》2004,40(6):1645-1658
ABSTRACT: Watershed and aquatic ecosystem management requires methods to predict and understand thermal impacts on stream habitat from urbanization. This study evaluates thermal effects of projected urbanization using a modeling framework and considers the biological implications to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with the Hydrologic Simulation Program Fortran (HSPF) to assess changes in stream thermal habitat under altered stream‐ flow, shade, and channel width associated with low, medium, and high density urban developments in the Back Creek watershed (Roanoke County, Virginia). Flow alteration by the high density development scenario alone caused minimal heating of mean daily summer base flow (mean +0.1°C). However, when flow changes were modeled concurrently with reduced shade and increased channel width, mean daily temperature increased 1°C. Maximum daily temperatures exceeding the state standard (31°C) increased from 1.1 to 7.6 percent of the time using summer 2000 climatic conditions. Model results suggest that additional urban development will alter stream temperature, potentially limiting thermal habitat and shifting the fish community structure from intolerant to tolerant fish species in Back Creek. More research is needed on the sub‐lethal or chronic effects of increased stream temperature regimes on fish, particularly for those species already living in habitats near their upper limits. 相似文献
7.
R. Christian Jones Christopher C. Clark 《Journal of the American Water Resources Association》1987,23(6):1047-1055
ABSTRACT: The impact of urbanization on stream insect communities was determined by sampling 22 sites in northern Virginia representing a range of human population densities. Watershed development had little effect on the total insect numbers (no./m2), but shifted the taxonomic composition markedly. Relative abundance of Diptera (mainly chironomids) increased at more highly urbanized sites, while most other insect orders including Ephemeroptera (mayflies), Coleoptera (bettles), Megaloptera (dobsonflies), and Plecoptera (stone-flies) decreased. Trichoptera (caddisfiles) exhibited a variable response. Genus diversity and richness (number of genera) were significantly higher in less urbanized streams. Two genera of chironomids were positively correlated with increased urbanization, while 14 other genera (scattered through several orders) were negatively related to human population density. Principal components analysis demonstrated a gradient from more urbanized to less urbanized stations based on generic and order level biological data. Results of this study indicate that watershed urbanization has a major impact on benthic insect communities even in the absence of point source discharges. 相似文献
8.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions. 相似文献
9.
Lizhu Wang John Lyons Paul Kanehl 《Journal of the American Water Resources Association》2006,42(4):1047-1062
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable. 相似文献
10.
John Cobourn 《Journal of the American Water Resources Association》1999,35(3):623-632
ABSTRACT: The Truckee River is a vitally important water source for eastern California and western Nevada. It runs 100 miles from Lake Tahoe to Pyramid Lake in the Nevada desert and serves urban populations in greater Reno-Sparks and agricultural users in three Nevada counties. In the 1980s and 1990s, a number of state and local groups initiated projects which, taken collectively, have accomplished much to improve watershed management on the Truckee River. However, the task of writing a management plan for the entire watershed has not yet been undertaken. Key players in state, federal and local government agencies have instead chosen to focus specific improvement efforts on more manageable, achievable goals. The projects currently underway include a new agreement on reservoir operation, restoration of high priority sub-watersheds, public education and involvement, water conservation education, and water resource planning for the major urban population centers. The approach which has been adopted on the Truckee River continues to evolve as more and more people take an interest in the river's future. The many positive projects underway on the watershed are evaluated in terms of how well they meet the definition of the ambitious water resources strategy, “integrated watershed management.” 相似文献
11.
Paul Lapp C. A. Madramootoo P Enright F Papineau J. Perrone 《Journal of the American Water Resources Association》1998,34(2):427-437
ABSTRACT: . Under a watershed based approach being examined by the Quebec Ministry of Agriculture to accelerate the adoption of conservation practices, a study on the impacts of agricultural practices on the St. Esprit watershed was initiated in the fall of 1993. The water quality of this 26 km2 intensive agricultural watershed was studied over an 18 month period. Water samples taken at the outlet of the watershed were analyzed for nitrate, phosphate, suspended sediment, and atrazine. Water quality data were analyzed to establish seasonal trends in pollutant concentration and load in the watercourse. Spring snowmelt was identified as a significant period of pollutant material export. All pollutant materials displayed seasonal variability in the export process. Peak pollutant concentrations were associated with high flow events. Mean observed pollutant concentrations did not exceed drinking water quality standards. 相似文献
12.
Sangjun Im Kevin M. Brannan Saied Mostaghimi 《Journal of the American Water Resources Association》2003,39(6):1465-1479
ABSTRACT: The Hydrologic Simulation Program‐Fortran (HSPF) was calibrated and used to assess the future effects of various land development scenarios on water quality in the Polecat Creek watershed in Caroline County, Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed stream flow and water quality data collected at the watershed outlet and the outlets of two sub water sheds. Using the county's Comprehensive Plan, land use scenarios were developed by taking into account the trends and spatial distributions of future development. The simulation results for the various land use scenarios indicate that runoff volume and peak rate increased as urban areas increased. Urbanization also increased sediment loads mainly due to increases in channel erosion. Constituent loads of total Kjeldal nitrogen, orthophosphorus, and total phosphorous for Polecat Creek watershed slightly decreased under future development scenarios. These reductions are due to increases in urban areas that typically contribute smaller quantities of nitrogen and phosphorous, as compared to agricultural areas. However, nitrate loads increased for the future land use scenarios, as compared to the existing land use. The increases in nitrate loads may result from increases in residential land and associated fertilizer use and concurrent decreases in forested land. The procedures used in this paper could assist local, state, and regional policy makers in developing land management strategies that minimize environmental impacts while allowing for future development. 相似文献
13.
Faith A. Fitzpatrick Mitchell A. Harris Terri L. Arnold Kevin D. Richards 《Journal of the American Water Resources Association》2004,40(2):461-475
ABSTRACT: Biotic indices and sediment trace element concentrations for 43 streams in northeastern Illinois (Chicago area) from the 1980s and 1990s were examined along an agricultural to urban land cover gradient to explore the relations among biotic integrity, sediment chemistry, and urbanization. The Illinois fish Alternative Index of Biotic Integrity (AIBI) ranged from poor to excellent in agricultural/rural streams, but streams with more than 10 percent watershed urban land (about 500 people/mi2) had fair or poor index scores. A macroinvertebrate index (MBI) showed similar trends. A qualitative habitat index (PIBI) did not correlate to either urban indicator. The AIBI and MBI correlated with urban associated sediment trace element concentrations. Elevated copper concentrations in sediment occurred in streams with greater than 40 percent watershed urban land. The number of intolerant fish species and modified index of biotic integrity scores increased in some rural, urbanizing, and urban streams from the 1980s to 1990s, with the largest increases occurring in rural streams with loamy/sandy surficial deposits. However, smaller increases also occurred in urban streams with clayey surficial deposits and over 50 percent watershed urban land. These data illustrate the potentially complex spatial and temporal relations among biotic integrity, sediment chemistry, watershed urban land, population density, and regional and local geologic setting. 相似文献
14.
Daniel E. Line 《Journal of the American Water Resources Association》2002,38(6):1691-1701
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek. 相似文献
15.
Joseph L. Ebersole William J. Liss Christopher A. Frissell 《Journal of the American Water Resources Association》2003,39(2):355-368
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches. 相似文献
16.
Jeffery A. Ballweber 《Journal of the American Water Resources Association》1999,35(3):643-654
ABSTRACT: Integrated watershed management in the Lower Mississippi Alluvial Plain (Delta) requires blending federal, state, and local authority. The federal government has preeminent authority over interstate navigable waters. Conversely, state and local governments have authority vital for comprehensive watershed management. In the Delta, integrating three broad legal and administrative regimes: (1) flood control, (2) agricultural watershed management, and (3) natural resources and environmental management, is vital for comprehensive intrastate watershed, and interstate river basin management. Federal Mississippi River flood control projects incorporated previous state and local efforts. Similarly, federal agricultural programs in the River's tributary headwaters adopted watershed management and were integrated into flood control efforts. These legal and administrative regimes implement national policy largely in cooperation with and through technical and financial assistance to local agencies such as levee commissions and soil and water conservation districts. This administrative infrastructure could address new national concerns such as nonpoint source pollution which require a watershed scale management approach. However, the natural resources and environmental management regime lacks a local administrative infrastructure. Many governmental and non governmental coordinating organizations have recently formed to address this shortcoming in the Delta. With federal and state leadership and support, these organizations could provide mechanisms to better integrate natural resources and environmental issues into the Delta's existing local administrative infrastructure. 相似文献
17.
Fred J. Brenner James J. Mondok 《Journal of the American Water Resources Association》1995,31(6):1101-1112
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems. 相似文献
18.
Jaswinder Singh H. Vernon. Knapp J.G. Arnold Misganaw Demissie 《Journal of the American Water Resources Association》2005,41(2):343-360
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application. 相似文献
19.
Yongping Yuan Ronald L. Bingner Richard A. Rebich 《Journal of the American Water Resources Association》2003,39(2):457-466
ABSTRACT: Pollutants entering a water system can be very destructive to the health of that system. Best Management Practices (BMPs) are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid in the decision‐making process of selecting the BMPs that are most effective in reducing the pollutant loading and are also the most cost effective. The Annualized Agricultural Nonpoint Source Pollution model (AnnAGNPS 2.0) is a technological tool that can be used to estimate watershed response to agricultural management practices. The main purpose of this paper is to test the performance of AnnAGNPS 2.0 on nitrogen loading using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. Previous work has demonstrated the capability of the model to simulate runoff and sediment. From sensitivity analyses in this study, initial nitrogen concentration in the soil and crop nitrogen uptake had the most impact on the nitrogen loadings. AnnAGNPS simulations of monthly nitrogen loadings are poor. However, statistical test (t‐test) showed that the predicted nitrogen loading is not significantly different from observed nitrogen loading at the 95 percent level of confidence. 相似文献
20.
Keith E. Schilling Carol A. Thompson 《Journal of the American Water Resources Association》2000,36(5):1101-1114
ABSTRACT: Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired‐watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash‐rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76–86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate‐N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate‐N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate‐N and chloride ratios less than one in the Walnut Creek watershed and low nitrate‐N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate‐N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate‐N concentrations appear related to the percentage of row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer‐term monitoring will allow better evaluation of the impact of restoration activities on water quality. 相似文献