首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Active adaptive management is the centerpiece of a major species recovery program now underway on the central Platte River in Nebraska. The Platte River Recovery Implementation Program initiated on January 1, 2007 and is a joint effort between the states of Colorado, Wyoming, and Nebraska; the U.S. Department of the Interior; waters users; and conservation groups. This program is intended to address issues related to endangered species and loss of habitat along the Platte River in central Nebraska by managing land and water resources and using adaptive management as its science framework. The adaptive management plan provides a systematic process to test hypotheses and apply the information learned to improve management on the ground, and is centered on conceptual models and priority hypotheses that reflect different interpretations of how river processes work and the best approach to meeting key objectives. This framework reveals a shared attempt to use the best available science to implement experiments, learn, and revise management actions accordingly on the Platte River. This paper focuses on the status of adaptive management implementation on the Platte, experimental and habitat design issues, and the use of decision analysis tools to help set objectives and guide decisions.  相似文献   

2.
Commonly used methods of evaluating the degree of consistency of protected area ecosystems with social and ecological carrying capacities are likely to result in decision errors. This occurs because such methods do not account for imprecision and uncertainty in inferring the degree of ecosystem consistency from an observed ecosystem indicator. This paper proposes a fuzzy adaptive management approach to determine whether a protected area ecosystem is consistent with ecological and social carrying capacities and, if not, to identify management actions that are most likely to achieve consistency when there is uncertainty about the current degree of consistency and how alternative management actions are likely to influence that consistency. The proposed approach is illustrated using a hypothetical example that uses an ecosystem indicator that reflects combinations of different levels of user satisfaction and conservation of threatened and endangered species. Application of the proposed fuzzy adaptive management approach requires a protected area manager to: (1) identify alternative management actions for achieving ecosystem consistency with social and ecological carrying capacities in each of several management zones in a protected area; (2) randomly assign alternative management actions to management zones; (3) define fuzzy sets for the ecosystem indicator and degree of ecosystem consistency, and fuzzy relations between the ecosystem indicator and the degree of ecosystem consistency; (4) monitor the indicator in each management zone; (5) define fuzzy sets based on the observed indicator in each management zone; and (6) combine the fuzzy sets defined on the observed indicator and the fuzzy relations between the indicator and the degree of ecosystem consistency to reach conclusions about the most likely degree of consistency for alternative management actions in each management zone. The fuzzy adaptive management approach proposed here is advantageous when the benefits of avoiding the decision errors inherent with crisp and stochastic decision rules outweigh the added cost of implementing the approach.  相似文献   

3.
4.
The Alfeios River, the longest and highest flow-rate river in Peloponnisos, constitutes an important water resource and ecosystem in Greece. In the present study, human activities in the Alfeios River Basin are described, and their impacts on water quality and the ecosystem are analyzed; effects resulting from interventions on river geomorphology between Flokas Dam and the river delta are determined. These actions have caused significant adverse impacts on the infrastructure (the dam, railroad, and road bridges), the level of aquifer water table and area water uses, and the aquatic and riparian ecosystem. A general integrated management strategy is formulated and a master management plan is proposed for resolving management problems in river basins. The plan considers local conditions and national requirements and complies with the European Communities legislation; it would help prevent further basin deterioration, improve water quality, and protect water resources and ecosystems in the area in accordance to sustainable development. The Alfeios River Basin serves as a case study in the development of the plan.Published online Note: This version was published online in June 2005 with the cover date of August 2004.  相似文献   

5.
ABSTRACT: This paper addresses the recent interest in management of the Missouri River. Interstate issues in the river basin include interbasin water diversions, riverbed and shoreline degradation, loss of recreational and natural areas, reduction in navigation capacity, the status of the Pick-Sloan Missouri Basin Program in terms of general river development, and the elimination of river basin commissions, An attempt to develop a comprehensive interstate water compact failed in the 1950s. The new efforts towards establishing a compact are discussed, as well as other available mechanisms for resolution of the current political and legal differences among the ten river basin states.  相似文献   

6.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   

7.
Many frameworks have been used to identify environmental flows for sustaining river ecosystems or specific taxa in the face of widespread flow alteration. However, these frameworks largely focus on identifying suitable flows and often ignore the important links between management actions, resulting flows, and valued ecosystem or social responses. Structured decision making (SDM) could assist the comparison of environmental flows by providing a mature framework to link management actions to objectives via environmental flow science. We describe SDM and illustrate its application using a case study focused on comparing environmental flow scenarios for the mainstem Willamette River, Oregon. In a short timeframe, SDM was applied to identify objectives, develop empirical and expert opinion‐based models, and compare flow scenarios while accounting for interannual flow variability and partial controllability. No scenario was clearly preferred based on available knowledge, largely because river flows could only be partially controlled through dam operations. Participants agreed that SDM was useful for comparing alternative dam operations, but that refined predictive models and additional objectives were needed to better inform basinwide flow decisions. In our view, SDM can provide more realistic comparisons of environmental flows by accounting for partial controllability and uncertainty, which may result in greater implementation of available flow management actions.  相似文献   

8.
Studies have shown that ecological restoration projects are more likely to gain public support if they simultaneously increase important human services that natural resources provide to people. River restoration projects have the potential to influence many of the societal functions (e.g., flood control, water quality) that rivers provide, yet most projects fail to consider this in a comprehensive manner. Most river restoration projects also fail to take into account opportunities for revitalization of large-scale river processes, focusing instead on opportunities presented at individual parcels. In an effort to avoid these pitfalls while planning restoration of the Sacramento River, we conducted a set of coordinated studies to evaluate societal impacts of alternative restoration actions over a large geographic area. Our studies were designed to identify restoration actions that offer benefits to both society and the ecosystem and to meet the information needs of agency planning teams focusing on the area. We worked with local partners and public stakeholders to design and implement studies that assessed the effects of alternative restoration actions on flooding and erosion patterns, socioeconomics, cultural resources, and public access and recreation. We found that by explicitly and scientifically melding societal and ecosystem perspectives, it was possible to identify restoration actions that simultaneously improve both ecosystem health and the services (e.g., flood protection and recreation) that the Sacramento River and its floodplain provide to people. Further, we found that by directly engaging with local stakeholders to formulate, implement, and interpret the studies, we were able to develop a high level of trust that ultimately translated into widespread support for the project.  相似文献   

9.
/ Adaptive ecosystem management seeks to sustain ecosystems while extracting or using natural resources. The goal of endangered species management under the Endangered Species Act is limited to the protection and recovery of designated species, and the act takes precedence over other policies and regulations guiding ecosystem management. We present an example of conflict between endangered species and ecosystem management during the first planned flood on the Colorado River in Grand Canyon in 1996. We discuss the resolution of the conflict and the circumstances that allowed a solution to be reached. We recommend that adaptive management be implemented extensively and early in ecosystem management so that information and working relationships will be available to address conflicts as they arise. Though adaptive management is not a panacea, it offers the best opportunity for balanced solutions to competing management goals.  相似文献   

10.
The Brisbane River serves multiple functions in both its upper catchment and its lower reaches. The lower reaches are highly urbanized where the river flows through Australia's third largest city, and here the river sustains transport activities, waste water disposal, a port, and both motorized recreation and active and passive non-motorized recreation. In the city the river also serves as a locality for community events, as a cultural icon and as a residential neighbour. Many of these functions are spatially and temporally congruent and, amongst other issues, this congruency has the potential to generate significant levels of noise conflict. This paper describes the approach adopted to assess the nature and extent of noise conflicts and to develop a comprehensive strategy of noise management-allas part of a larger scheme for an integrated approach to manage the Brisbane River and its catchment. Noise management strategies recommended for implementation include noise zoning of the river, planning and approval processes for land-based waterway facilities, noise planning and approval processes for residential and other noise-sensitive uses, codes of practice for rowing and similar activities, as well as the more conventional approach of regulatory limits on river-based noise sources. The paper demonstrates that a wide range of strategies are necessary to handle complex pollution problems of this sort, and provides a model of comprehensive action for management of noise from river-related activities that may find application elsewhere.  相似文献   

11.
Adaptive management, an established method in natural resource and ecosystem management, has not been widely applied to landscape planning due to the lack of an operational method that addresses the role of uncertainty and standardized monitoring protocols and methods. A review of adaptive management literature and practices reveals several key concepts and principles for adaptive planning: (1) management actions are best understood and practiced as experiments; (2) several plans/experiments can be implemented simultaneously; (3) monitoring of management actions are key; and (4) adaptive management can be understood as ‘learning by doing’. The paper identifies various uncertainties in landscape planning as the major obstacles for the adoption of an adaptive approach. To address the uncertainty in landscape planning, an adaptive planning method is proposed where monitoring plays an integral role to reduce uncertainty. The proposed method is then applied to a conceptual test in water resource planning addressing abiotic-biotic-cultural resources. To operationalize adaptive planning, it is argued that professionals, stakeholders and researchers need to function in a genuinely transdisciplinary mode where all contribute to, and benefit from, decision making and the continuous generation of new knowledge.  相似文献   

12.
ABSTRACT: Researchers representing each of the Colorado River Basin states as well as the Secretary of the Interior were presented with an interactive computer simulation of a progressively increasing drought and were given the collective opportunity to change the ways in which basin-wide and within-state water management were conducted. The purpose of this “gaming” exercise was to identify rules for managing the Colorado River which are effective in preventing drought-caused damages to basin water users. This water management game was conducted three times, varying the collective choice roles for management of the river yet staying substantially within the current institution for management of the Colorado River known as the “Law of the River.” The Law of the River was quite effective in minimizing drought impacts upon consumptive water uses. Additional effective drought-coping measures to protect consumptive uses consisted mostly of intrastate water management improvements which states were able to implement independently. The Law of the River did not protect non-consumptive water uses, such as hydroelectric power generation, water-based recreation, endangered species, and water quality from drought, as well as it protected consumptive water uses. Players reached collective choice decisions to cope with rising salinity, equalize storage between the upper and lower basins, and protect endangered species. While these measures had some success, only reductions in withdrawals for consumptive uses, particularly in the upper basin, could have substantially lessened adverse impacts.  相似文献   

13.
Adaptive management: Promises and pitfalls   总被引:3,自引:1,他引:3  
Proponents of the scientific adaptive management approach argue that it increases knowledge acquisition rates, enhances information flow among policy actors, and provides opportunities for creating shared understandings. However, evidence from efforts to implement the approach in New Brunswick, British Columbia, Canada, and the Columbia River Basin indicates that these promises have not been met. The data show that scientific adaptive management relies excessively on the use of linear systems models, discounts nonscientific forms of knowledge, and pays inadequate attention to policy processes that promote the development of shared understandings among diverse stakeholders. To be effective, new adaptive management efforts will need to incorporate knowledge from multiple sources, make use of multiple systems models, and support new forms of cooperation among stakeholders.  相似文献   

14.
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   

15.
ABSTRACT: River Environment Classification (REC) is a new system for classifying river environments that is based on climate, topography, geology, and land cover factors that control spatial patterns in river ecosystems. REC builds on existing principles for environmental regionalization and introduces three specific additions to the “ecoregion” approach. First, the REC assumes that ecological patterns are dependent on a range of factors and associated landscape scale processes, some of which may show significant variation within an ecoregion. REC arranges the controlling factors in a hierarchy with each level defining the cause of ecological variation at a given characteristic scale. Second, REC assumes that ecological characteristics of rivers are responses to fluvial (i.e., hydrological and hydraulic) processes. Thus, REC uses a network of channels and associated watersheds to classify specific sections of river. When mapped, REC has the form of a linear mosaic in which classes change in the downstream direction as the integrated characteristics of the watershed change, producing longitudinal spatial patterns that are typical of river ecosystems. Third, REC assigns individual river sections to a class independently and objectively according to criteria that result in a geographically independent framework in which classes may show wide geographic dispersion rather than the geographically dependent schemes that result from the ecoregion approach. REC has been developed to provide a multiscale spatial framework for river management and has been used to map the rivers of New Zealand at a 1:50,000 mapping scale.  相似文献   

16.
ABSTRACT: The objective of cost effectiveness has led to the use of mathematical decision models to implement the best water quality control program in a river from the various alternatives available at a time. The paper presents the water quality control program in the Hsintien River in Taiwan by the use of probabilistic programming technique.  相似文献   

17.
Adaptive management is an approach to recurrent decision making in which uncertainty about the decision is reduced over time through comparison of outcomes predicted by competing models against observed values of those outcomes. The National Wildlife Refuge System (NWRS) of the U.S. Fish and Wildlife Service is a large land management program charged with making natural resource management decisions, which often are made under considerable uncertainty, severe operational constraints, and conditions that limit ability to precisely carry out actions as intended. The NWRS presents outstanding opportunities for the application of adaptive management, but also difficult challenges. We describe two cooperative programs between the Fish and Wildlife Service and the U.S. Geological Survey to implement adaptive management at scales ranging from small, single refuge applications to large, multi-refuge, multi-region projects. Our experience to date suggests three important attributes common to successful implementation: a vigorous multi-partner collaboration, practical and informative decision framework components, and a sustained commitment to the process. Administrators in both agencies should consider these attributes when developing programs to promote the use and acceptance of adaptive management in the NWRS.  相似文献   

18.
The problems posed by adaptive management for improved ecosystem health are reviewed. Other kinds of science-informed ecosystem management are needed for those regions of conflict between rapid human population growth, increased resource extraction, and the rising demand for better environmental amenities, where large-scale experiments are not feasible. One new framework is threshold-based resource management. Threshold-based resource management guides management choices among four major science and engineering approaches to achieve healthier ecosystems: self-sustaining ecosystem management, adaptive management, case-by-case resource management, and high-reliability management. As resource conflicts increase over a landscape (i.e., as the ecosystems in the landscape move through different thresholds), management options change for the environmental decision-maker in terms of what can and cannot be attained by way of ecosystem health. The major policy and management implication of the framework is that the exclusive use or recommendation of any one management regime, be it self-sustaining, adaptive, case-by-case, or high-reliability management, across all categories of ecosystems within a heterogeneous landscape that is variably populated and extractively used is not only inappropriate, it is fatal to the goals of improved ecosystem health. The article concludes with detailed proposals for environmental decision-makers to undertake “bandwidth management” in ways that blend the best of adaptive management and high-reliability management for improved ecosystem health while at the same time maintaining highly reliable flows of ecosystem services, such as water.  相似文献   

19.
ABSTRACT: Texas river authorities are a type of large, regional water district that must be financially self-sufficient. An institutional and historical study of Texas river authorities reveals the broad power of these organizations and their influence in water management. River authorities now control 25 percent of surface water deliveries in Texas. Over two-thirds of authority water was developed by river authorities; nearly one-third was purchased from private or public ventures. While river authority activities have been effective where these services are marketable, the provision of public good services is limited. Increased visibility of these organizations is paralleled by challenges to their traditional autonomy.  相似文献   

20.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号