共查询到20条相似文献,搜索用时 0 毫秒
1.
Tamara Mittman Lawrence E. Band Taehee Hwang Monica Lipscomb Smith 《Journal of the American Water Resources Association》2012,48(3):546-557
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment. 相似文献
2.
Sopan D. Patil Parker J. Wigington Jr. Scott G. Leibowitz Randy L. Comeleo 《Journal of the American Water Resources Association》2014,50(3):762-776
We implement a spatially lumped hydrologic model to predict daily streamflow at 88 catchments within the state of Oregon and analyze its performance using the Oregon Hydrologic Landscape (OHL) classification. OHL is used to identify the physio‐climatic conditions that favor high (or low) streamflow predictability. High prediction catchments (Nash‐Sutcliffe efficiency of (NS) > 0.75) are mainly classified as rain dominated with very wet climate, low aquifer permeability, and low to medium soil permeability. Most of them are located west of the Cascade Mountain Range. Conversely, most low prediction catchments (NS < 0.6) are classified as snow‐dominated with high aquifer permeability and medium to high soil permeability. They are mainly located in the volcano‐influenced High Cascades region. Using a subset of 36 catchments, we further test if class‐specific model parameters can be developed to predict at ungauged catchments. In most catchments, OHL class‐specific parameters provide predictions that are on par with individually calibrated parameters (NS decline < 10%). However, large NS declines are observed in OHL classes where predictability is not high enough. Results suggest higher uncertainty in rain‐to‐snow transition of precipitation phase and external gains/losses of deep groundwater are major factors for low prediction in Oregon. Moreover, regionalized estimation of model parameters is more useful in regions where conditions favor good streamflow predictability. 相似文献
3.
Huidae Cho Francisco Olivera 《Journal of the American Water Resources Association》2009,45(3):673-686
Abstract: The spatial variability of the data used in models includes the spatial discretization of the system into subsystems, the data resolution, and the spatial distribution of hydrologic features and parameters. In this study, we investigate the effect of the spatial distribution of land use, soil type, and precipitation on the simulated flows at the outlet of “small watersheds” (i.e., watersheds with times of concentration shorter than the model computational time step). The Soil and Water Assessment Tool model was used to estimate runoff and hydrographs. Different representations of the spatial data resulted in comparable model performances and even the use of uniform land use and soil type maps, instead of spatially distributed, was not noticeable. It was found that, although spatially distributed data help understand the characteristics of the watershed and provide valuable information to distributed hydrologic models, when the watershed is small, realistic representations of the spatial data do not necessarily improve the model performance. The results obtained from this study provide insights on the relevance of taking into account the spatial distribution of land use, soil type, and precipitation when modeling small watersheds. 相似文献
4.
D. J. Wall D. F. Kibler M. E. Hastings 《Journal of the American Water Resources Association》1987,23(5):919-926
Regional procedures to estimate flood magnitudes for ungaged watersheds typically ignore available site-specific historic flood information such as high water marks and the corresponding flow estimates, otherwise referred to as limited site-specific historic (LSSH) flood data. A procedure to construct flood frequency curves on the basis of LSSH flood observations is presented. Simple inverse variance weighting is employed to systematically combine flood estimates obtained from the LSSH data base with those from a regional procedure to obtain improved estimtes of flood peaks on the ungaged watershed. For the region studied, the variance weighted estimates of flow had a lower logarithmic standard error than either the regional or the LSSH flow estimates, when compared to the estimates determined by three standard distributions for gaged watersheds investigated in the development of the methodology. Use of the simple inverse variance weighting procedure is recommended when “reliable” estimates of LSSH floods for the ungaged site are available. 相似文献
5.
Ke‐Sheng Cheng Irene Hueter En‐Ching Hsu Hui‐Chung Yeh 《Journal of the American Water Resources Association》2001,37(3):723-735
Abstract. Hyetographs are essential to many hydrological designs. Many studies have shown that hyetographs are specific to storm types and durations. Recent work presented evidence that dimensionless hyetographs are scale invariant. We show that the simple scaling property of rainfall guarantees that the normalized rainfall rates of different storm durations are identically distributed and propose a nonstationary Gauss‐Markov model based on the annual maximum events that arise from the dominant storm type. We derive the unique estimators for the parameters of the Gauss‐Markov model under two constraints that: (a) the typical peak rainfall rate is preserved, and (b) the most likely hyetograph is obtained. One attractive feature of this model is that it allows translating hyetographs between storms of different durations. Two examples illustrate our model. 相似文献
6.
Danielle K. Forsyth Catherine M. Riseng Kevin E. Wehrly Lacey A. Mason John Gaiot Tom Hollenhorst Craig M. Johnston Conrad Wyrzykowski Gust Annis Chris Castiglione Kent Todd Mike Robertson Dana M. Infante Lizhu Wang James E. McKenna Gary Whelan 《Journal of the American Water Resources Association》2016,52(5):1068-1088
Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes. 相似文献
7.
Matthew D. Berg Sorin C. Popescu Bradford P. Wilcox Jay P. Angerer Edward C. Rhodes Jason McAlister William E. Fox 《Journal of the American Water Resources Association》2016,52(1):67-76
Despite their size, small farm ponds are important features in many landscapes. Yet hydrographical databases often fail to capture these ponds, and their impacts on watershed processes remain unclear. For a 230‐km2 portion of central Texas, United States (U.S.), we created a historical inventory of ponds and quantified the accuracy of automated detection methods under varying drought conditions. In addition, we documented pond dredging/enlargement events and identified sites that had been abandoned. We also analyzed sediment cores from downstream reservoirs to track changes in watershed sediment transport. Over 75 years, pond densities increased more than 350% — to among the highest documented in the U.S. — and the ability of automated methods to detect these ponds was highly dependent on drought severity (R2 = 0.96). Approximately 5% of ponds present in the 1950s were no longer present in 2012, while 33% were dredged between 1937 and 2012. Downstream reservoir sedimentation has decreased by an average of 55% as ponds have increased in number. These findings suggest that small ponds and the maintenance of trapping efficiency have large‐scale impacts on sediment dynamics. Accurately accounting for these storage effects is vital to water resource planning efforts. 相似文献
8.
D. A. Higgins S. B. Maloney A. R. Tiedemann T. M. Quigley 《Journal of the American Water Resources Association》1988,24(2):347-360
ABSTRACT: The BURP water-balance model was calibrated for 13 small (0.46 to 7.00 mi2), forested watersheds in the Blue Mountains of eastern Oregon where snowmelt is the dominant source of runoff. BURP is the model name and is not an acronym. Six of the 16 parameters in BURP were calibrated. The subsurface recession coefficient and three subsurface water-storage parameters were most sensitive for simulating monthly flow. Calibrated subsurface recession coefficients ranged from 0.988 to 0.998. The subsurface-water storage parameters were calibrated at between 20 to 120 percent of their initial values obtained from a category III soil survey. That reconnaissance-level survey was apparently too broad to accurately reflect subsurface-water storage in small watersheds. Tests of model performance showed BURP is capable of producing accurate simulations of monthly flow for mountainous, snow-dominated watersheds with shallow (< 4 ft) soils when calibrated with 2 to 4 years of streamflow data. A regression of observed versus simulated monthly flows with data from all watersheds combined showed that BURP accounted for 85 percent of the variability in observed flows, which ranged from 0.01 to 20.8 inches, but underpredicted high flow months, with a slope of 1.15 that is significantly different from 1.0 (p = 0.05). Without prior calibration, subsurface-water storage parameters appeared to be the greatest source of potential error. 相似文献
9.
Paula Jo Lemonds John E. McCray 《Journal of the American Water Resources Association》2007,43(4):875-887
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible. 相似文献
10.
H. Evan Cornfield Vicente L. Lopes 《Journal of the American Water Resources Association》2004,40(2):321-332
ABSTRACT: A process based, distributed runoff erosion model (KINEROS2) was used to examine problems of parameter identification of sediment entrainment equations for small watersheds. Two multipliers were used to reflect the distributed nature of the sediment entrainment parameters: one multiplier for a raindrop induced entrainment parameter, and one multiplier for a flow induced entrainment parameter. The study was conducted in three parts. First, parameter identification was studied for simulated error free data sets where the parameter values were known. Second, the number of data points in the simulated sedigraphs was reduced to reflect the effect of temporal sampling frequency on parameter identification. Finally, event data from a small range‐land watershed were used to examine parameter identifiability when the parameter values are unknown. Results demonstrated that whereas unique multiplier values can be obtained for simulated error free data, unique parameter values could not be obtained for some event data. Unique multiplier values for raindrop induced entrainment and flow induced entrainment were found for events with greater than a two‐year return period (~25 mm) that also had at least 10 mm of rain in ten minutes. It was also found that the three‐minute sampling frequency used for the sediment sampler might be inadequate to identify parameters in some cases. 相似文献
11.
Charles R. Kratzer 《Journal of the American Water Resources Association》1999,35(2):379-395
ABSTRACT: Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federalstate collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991–1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 μ/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin. 相似文献
12.
Michael S. Tomlinson Eric H. De Carlo 《Journal of the American Water Resources Association》2003,39(1):113-123
ABSTRACT: Streams in the Hawaiian Islands differ from many streams on the U.S. mainland presenting unique challenges to investigators attempting to characterize Hawaiian streams. Hawaiian streams are short; watersheds are small and steep; and rain events are usually short in duration but intense. As a result, most streams in Hawai'i are flashy. Time scales for storm hydrographs in Hawai'i are on the order of hours instead of days and flash flooding is a common hazard. To characterize the streams we were investigating, we found it necessary to obtain streamflow and water quality measurements at relatively short time intervals. While this resolution resulted in large sometimes onerous quantities of data, we would have otherwise missed certain phenomena, such as 60‐fold flow changes in 15 minutes or 30‐fold turbidity changes in five minutes. Even at five‐minute intervals, we found that attempts to predict TSS using a relationship obtained from in situ turbidity were not always satisfactory. Depending on the precision required, either higher resolution measurements or in vitro turbidity measurements of the TSS samples might be necessary. Finally, these high resolution measurements enabled us to observe other cyclical events that might have been missed if the measurement intervals were greater than one hour. 相似文献
13.
Katrin Bieger Jeffrey G. Arnold Hendrik Rathjens Michael J. White David D. Bosch Peter M. Allen 《Journal of the American Water Resources Association》2019,55(3):578-590
In recent years, watershed modelers have put increasing emphasis on capturing the interaction of landscape hydrologic processes instead of focusing on streamflow at the watershed outlet alone. Understanding the hydrologic connectivity between landscape elements is important to explain the hydrologic response of a watershed to rainfall events. The Soil and Water Assessment Tool+ (SWAT+) is a new version of SWAT with improved runoff routing capabilities. Subbasins may be divided into landscape units (LSUs), e.g., upland areas and floodplains, and flow can be routed between these LSUs. We ran three scenarios representing different extents of connectivity between uplands, floodplains, and streams. In the first and second scenarios, the ratio of channelized flow from the upland to the stream and sheet flow from the upland to the floodplain was 70/30 and 30/70, respectively, for all upland/floodplain pairs. In the third scenario, the ratio was calculated for each upland/floodplain pair based on the upland/floodplain area ratio. Results indicate differences in streamflow were small, but the relative importance of flow components and upland areas and floodplains as sources of surface runoff changed. Also, the soil moisture in the floodplains was impacted. The third scenario was found to provide more realistic results than the other two. A realistic representation of connectivity in watershed models has important implications for the identification of pollution sources and sinks. 相似文献
14.
15.
ABSTRACT: Regionalization of design storms can enhance their utility. Otherwise they have to be separately developed for different regions. Huff curves developed from point rainfall data collected at Coshocton, Ohio, and Chicago, Illinois, and from area-averaged Illinois and Texas precipitation data, are compared. The curves are similar in shape and position, with some visual differences depending on quartile. Kolmogorov-Smirnov tests showed no significant differences in moat of the comparisons. Where significant differences existed, they may not represent real differences due to the small number of storms sampled. Consequently, regionalization of Huff curves from Ohio to Illinois to Texas may be appropriate. The comparison of Huff curves is affected to an unknown degree both by the effects of area averaging of data and by basis. of-development differences. The effects of observed differences in Huff curves on watershed response variables (e.g., peak flow) requires further study. 相似文献
16.
Pierre Beaudoin Jean Rousselle Gilles Marchi 《Journal of the American Water Resources Association》1983,19(3):483-487
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events. 相似文献
17.
Jennifer K. Holman‐Dodds A. Allen Bradley Kenneth W. Potter 《Journal of the American Water Resources Association》2003,39(1):205-215
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins. 相似文献
18.
Steve A. Mizell Richard H. French 《Journal of the American Water Resources Association》1995,31(3):447-461
ABSTRACT: Historically ephemeral washes in the Las Vegas Valley have become perennial streams in the urbanized area, and the primary source of these perennial flows appears to be the overirrigation of ornamental landscaping and turf. Overirrigation produces direct runoff to the washes via the streets and results in high ground water levels in some areas. Elevated ground water levels result in discharge to the washes because of changes in the natural balance of the hydrologic system and construction site and foundation dewatering. In recognition of the resource potential of these flows within the Las Vegas Valley, of the potential for dry weather flows to convey pollutants from the Valley to Lake Mead, and of the need to characterize dry weather flows under the stormwater discharge permit program, the quantity and quality of dry weather flow in Flamingo Wash was investigated during the period September 1990 through May 1993. This paper focuses on the resource potential of the flow (quantity and quality) as it relates to the interception and use of this water within the Valley. Economic and legal issues associated with the interception and use of this resource are not considered here. 相似文献
19.
Toby N. Carlson 《Journal of the American Water Resources Association》2004,40(4):1087-1098
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed. 相似文献
20.
D. H. Peterson R. E. Smith M. D. Dettinger D. R. Cayan L. Riddle 《Journal of the American Water Resources Association》2000,36(2):421-432
ABSTRACT: Daily‐to‐weekly discharge during the snowmelt season is highly correlated among river basins in the upper elevations of the central and southern Sierra Nevada (Carson, Walker, Tuolumne, Merced, San Joaquin, Kings, and Kern Rivers). In many cases, the upper Sierra Nevada watershed operates in a single mode (with varying catchment amplitudes). In some years, with appropriate lags, this mode extends to distant mountains. A reason for this coherence is the broad scale nature of synoptic features in atmospheric circulation, which provide anomalous insolation and temperature forcing that span a large region, sometimes the entire western U.S. These correlations may fall off dramatically, however, in dry years when the snowpack is spatially patchy. 相似文献