首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Natural, acid and base modified kaolin clays were studied for the sake of phenol and 4-chlorophenol removal from aqueous environments and their application to real ground and industrial wastewater samples. Scanning electron microscope (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA), and Surface area analysis were employed for characterization of the adsorbents microstructure. Operating factors such as adsorbent dose, solution pH, initial phenol concentration, and contact time were studied. The experimental data displayed that the increase of the adsorbent dose, contact time, and pH value from 2 to 7 increases the efficiency of the removal process. Optimal conditions for phenolic removal were; contact time of 300 min, primary phenol solution of 25 mg/L, pH 7 and 2.5 g/L as an appropriate adsorbent dose using crude (natural), acid modified and base modified kaolin clays. The higher phenolic removal efficiencies were obtained at 5 mg/L as 90, 97, 96.2%, respectively, for the adsorbents in the previously mentioned order. The adsorption capacity in the removal of phenol and 4-chlorophenol were 7.481 and 4.195, 8.2942 and 3.211, and 8.05185 and 18.565 mg/g, respectively, for the adsorbents in the same mentioned order. The adsorption equilibrium data were fitted and analyzed with four isotherm models, namely, Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. The adsorption process of phenol on studied adsorbents was exothermic, spontaneous and thermodynamically favorable proved by the negative values of their thermodynamic parameters ΔH° and ΔG°. The correlation coefficient (R2) for all concentrations was higher than 0.94, which indicates that in the studied system, the data suitably fit the first-order kinetics. The % desorption capacity was amounted to 96%, 91.11%, and 87.06% of adsorbed phenol, respectively, for the adsorbents in the previous order using 0.1N NaOH and 10% V/V ethanol solutions as eluents at 25°C, indicating the reusability of the adsorbents. Kaolin and its modified forms can be introduced as eco-friendly and low-cost adsorbents in water remediation implementation.  相似文献   

2.
In the present work, the adsorption capacity of anthill was investigated as a low‐cost adsorbent to remove the heavy metal ions, lead (II) ion (Pb2+), and zinc (II) ion (Zn2+) from an aqueous solution. The equilibrium adsorption isotherms of the heavy metal ions were investigated under batch process. For the study we examined the effect of the solution's pH and the initial cations concentrations on the adsorption process under a fixed contact time and temperature. The anthill sample was characterized using a scanning electron microscope (SEM), X‐ray fluorescence (XRF), and Fourier transform infrared (FTIR) techniques. From the SEM analysis, structural change in the adsorbent was a result of heavy metals adsorption. Based on the XRF analysis, the main composition of the anthill sample was silica (SiO2), alumina (Al2O3), and zirconia (ZrO2). The change in the peaks of the spectra before and after adsorption indicated that there was active participation of surface functional groups during the adsorption process. The experimental data obtained were analyzed using 2‐ and 3‐parameter isotherm models. The isotherm data fitted very well to the 3‐parameter Radke–Prausnitz model. It was noted that Pb2+ and Zn2+ can be effectively removed from aqueous solution using anthill as an adsorbent.  相似文献   

3.
A study was carried out in order to compare the environmental performance of two different types of adsorbents in removing arsenic (As) from wastewater. A FeCl3-based adsorbent and a poly-Fe-based adsorbent were first synthesized and their abilities in adsorbing As from wastewater were investigated in terms of the adsorption density and the rate of adsorption. Here, it should be noted that the main material being used in the synthesis of the poly-Fe-based adsorbent was a waste product, known as polyferric sulfate or poly-Fe in short, which exits the manufacturing process of titanium dioxide.Both adsorbents were then compared in the context of life-cycle assessment (LCA). In other words, the experimental results (i.e. the value of the adsorption density and the rate of adsorption) were input into the LCA model in order to assess the environmental performance of each adsorbent in removing arsenic. An estimate for the environmental burden of each option was finally calculated as the sum of the depletion of abiotic resources (ADP), the global warming potential (GWP), the acidification potential (AP), the photo-oxidant formation potential (POCP), the eutrophication potential (EP), and the human toxicity potential (HTP). The main finding of this study was that the adsorption of arsenic by using the poly-Fe-based adsorbent is more attractive treatment option in the environmental protection point of view than the adsorption by using the FeCl3-based adsorbent, which generates a relatively larger environmental burden.  相似文献   

4.
A study was carried out in order to compare the environmental performance of two different types of adsorbents in removing arsenic (As) from wastewater. A FeCl3-based adsorbent and a poly-Fe-based adsorbent were first synthesized and their abilities in adsorbing As from wastewater were investigated in terms of the adsorption density and the rate of adsorption. Here, it should be noted that the main material being used in the synthesis of the poly-Fe-based adsorbent was a waste product, known as polyferric sulfate or poly-Fe in short, which exits the manufacturing process of titanium dioxide.Both adsorbents were then compared in the context of life-cycle assessment (LCA). In other words, the experimental results (i.e. the value of the adsorption density and the rate of adsorption) were input into the LCA model in order to assess the environmental performance of each adsorbent in removing arsenic. An estimate for the environmental burden of each option was finally calculated as the sum of the depletion of abiotic resources (ADP), the global warming potential (GWP), the acidification potential (AP), the photo-oxidant formation potential (POCP), the eutrophication potential (EP), and the human toxicity potential (HTP). The main finding of this study was that the adsorption of arsenic by using the poly-Fe-based adsorbent is more attractive treatment option in the environmental protection point of view than the adsorption by using the FeCl3-based adsorbent, which generates a relatively larger environmental burden.  相似文献   

5.
Zeolitic materials have been prepared from coal fly ash as well as from a SiO2–Al2O3 system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni2+, Cu2+, Cd2+ and Pb2+ were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin–Kaganer–Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.  相似文献   

6.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   

7.
The present study investigates the thermally activated carbon derived from Nerium oleander flower which was used an adsorbent. Physicochemical properties of Nerium oleander flower carbon (NOFC) were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared for the removal of DTB (Direct Turquoise Blue) and RR-HE7B (Reactive red–HE7B) dyes from aqueous solution. Adsorption studies were carried out with different pH, adsorbent dose, contact time, and initial concentration dye solution. Optimum conditions for maximum removal of DTB and RR-HE7B was achieved to be pH 2 for both dyes, adsorbent dose of 100 mg and equilibrium time of 35 and 60 min, respectively, for NOFC. The maximum adsorption capacity of NOFC was found to be 33.33 and 19.60 mg g?1, respectively, for the removal of dye solution. The mechanism of adsorption was studied by using different kinetic models and isotherms. The results clearly showed that the NOFC adsorption was fitted to pseudo–first-order for DTB and pseudo–second-order for RR-HE7B. Equilibrium data were well fitted with both isotherm models. According to the results, NOFC can effectively remove DTB and RR-HE7B from aqueous solutions.  相似文献   

8.
利用HDTMA改性沸石制成吸附剂,研究对水体中硝酸盐的吸附能力和机理及吸附剂残渣的资源化应用前景。结果表明:HDTMA改性沸石可增强其对硝酸盐的吸附能力。通过红外光谱和差热分析它的吸附机理,表明:改性沸石HZ4吸附有十六烷基三甲基溴化铵(HDTMA)分子;吸附剂残渣NHZ4吸附有十六烷基三甲基溴化铵(HDTMA)分子和硝酸盐。盆栽实验结果表明:吸附剂残渣NHZ4能提高玉米生物量,最大增幅为30.4%。  相似文献   

9.
In this paper, Loofa egyptiaca (LE), an agricultural plant cultivated in Egypt, was used to prepare low-cost activated carbon (LEC1 and LEC2) adsorbents. The adsorbents (LE, LEC1 and LEC2) were evaluated for their ability to remove direct blue 106 dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, dye concentration and adsorbent concentration. The surface chemistry of LE, LEC1 and LEC2 was analyzed by scanning electron microscopy (SEM). The experimental data were examined using Langmuir, Freundlich, Temkin and Harkins–Jura isotherms. The results showed that the adsorption of direct blue 106 was maximal at the lowest value of pH (pH = 2). Removal efficiency was increased with an increase in dye concentration and a decrease in amount of adsorbent. Maximum adsorption capacity was found to be 57.14, 63.3 and 73.53 mg/g for LE, LEC1 and LEC2 respectively. Kinetics were also investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The experimental data fitted very well with the pseudo-first-order and pseudo-second-order kinetic models. The results indicate that LE, LEC1 and LEC2 could be employed as adsorbents for the removal of direct blue dye from aqueous solutions.  相似文献   

10.
The fly ash treated by H2SO4 was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy (ΔH0) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.  相似文献   

11.
Two acrylic adsorbents with different morphological structures and bearing amidoethylenamine and thiol groups were obtained and used for platinum sorption from chloride solution by the batch method. Physico-chemical parameters that influence adsorption such as initial Pt(IV) concentration, stirring time, pH, and adsorbent amount were investigated. The thermodynamic parameters of Pt(IV) sorption on the synthesized adsorbent were also evaluated based on Langmuir and Freundlich isotherms. Thermodynamic parameters estimated from Langmuir constants indicated that the adsorption is spontaneous, exothermic and there is a disordered state at the molecular level. The models used to analyze the sorption rate led to the conclusion that the most important step in the sorption of Pt(IV) could be both particle diffusion and chemical reaction of [PtCl6] with amine functional groups. Thus, both the ion exchange and complex formation mechanisms can occur via nitrogen atoms in the recovery of Pt(IV) on the studied adsorbent.  相似文献   

12.
The effect of impregnation of activated carbon with Cr2O and Fe2O3 and promotion by Zn2+ on its adsorptive properties of carbon dioxide was studied using a volumetric adsorption apparatus at ambient temperature and low pressures. Slurry and solution impregnation methods were used to compare CO2 capture capacity of the impregnated activated carbon promoted by Zinc. The obtained adsorption isotherms showed that amount of CO2 adsorbed on the samples impregnated by Cr2O was increased about 20% in compare to raw activated carbon. The results also showed that Fe2O3 was not an effective impregnating species for activated carbon modification. Moreover slurry impregnation method showed higher CO2 adsorption capacity in comparison with solution impregnation method. Samples prepared by co-impregnation of two metal species showed more adsorption capacity than samples impregnated by just one metal species individually. Washing the impregnated samples by metal oxide resulted in 15% increase in CO2 adsorption capacities of activated carbons which can be attributed to the metal oxides removal covering the adsorption surface. Decreasing impregnation temperature from 95 to 25 °C in solution method showed a significant increase in CO2 adsorption capacity. Sips equation was found a suitable model fitting to the adsorption data in the range studied.  相似文献   

13.
Activated carbon was prepared from coconut shell, an agricultural waste, for the removal of phosphorus from synthetic phosphorus‐containing wastewater. The activated carbon obtained from the coconut shell was characterized using Fourier‐transform infrared (FTIR) spectroscopy. Batch mode experiments were conducted to study the effects of pH, particle size, adsorbent dosage, and sorption time on the adsorptive potential of the prepared activated carbon. Response surface methodology was employed to study the interactions among the variables and to optimize the process conditions for the maximum removal of phosphorus using the coconut shell–based activated carbon (CNS). The characterization results from the FTIR showed the presence of variety of functional groups, such as ?OH, ?NH, C=O, C?H, C?N, CH3, and CH2, which explains the CNS's improved adsorption behavior on the colloidal particles. A maximum performance of 95.22% was obtained for CNS at the optimum conditions of adsorbent dosage = 1,000 milligrams (local variable), pH 2 (local variable), particle size = 0.2 millimeters (local variable), and sorption time = 4.2 hours (global variable).  相似文献   

14.
In the present study, chemically modified Aleppo pine (Pinus halepensis Miller) sawdust was used for the removal of phosphate from water. Biosorbent preparation process included size fractionation, extraction for surface activation, acid prehydrolysis, and treatment with urea. Sorption of phosphate ions onto biosorbent was studied using the batch technique. The effect of different parameters such as contact time, adsorbate concentration, and temperature was investigated. The adsorption kinetics data were best described by the pseudo-second-order rate equation, and equilibrium was achieved after 40 and 80 min for modified and unmodified sawdust, respectively. The Langmuir and Freundlich equations for describing adsorption equilibrium were applied to data. The constants and correlation coefficients of these isotherm models were calculated and compared. The adsorption isotherms obey the Freundlich equation. The thermodynamic parameters like free energy, enthalpy, and entropy changes for the adsorption of phosphate ions have been evaluated, and it has been found that the reaction was spontaneous and endothermic in nature. The low value of activated energy of adsorption, 3.088–3.540 kJ mol−1, indicates that the phosphate ions are easily adsorbed on the sawdust. Results suggest that the prepared chemically modified Aleppo pine sawdust has potential in remediation of contaminated waters by phosphate.  相似文献   

15.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

16.
研究了pH值、吸附接触时间、铜离子的初始浓度及活性炭纤维(ACF)的投加量对活性炭纤维吸附Cu2+的影响,并选取了最佳的实验条件。用Langmuir方程和Freundlich方程拟合活性炭纤维对Cu2+吸附等温线,结果表明:活性炭纤维吸附Cu2+更符合Langmuir等温式,其相关系数为0.9995,以单分子层吸附为主。对活性炭纤维改性能明显提高对Cu2+的吸附,其中效果最佳的吸附量从4.8mg/g增加到17.32mg/g,提高了3.6倍。  相似文献   

17.
In the present work, the crude biodiesel produced from spent fish frying oil through alkaline catalyzed transesterification was purified using a low-cost adsorbent viz. sulfonated tea waste. After separating the glycerol, the crude biodiesel was purified using the suggested adsorbent. Various methods of purification using the said adsorbent were applied such as purification using adsorption column chromatography and shaking methods. The results showed that purification using adsorption column chromatography exhibited the bst result. Properties of the purified fuels were determined and found conformed to those specified by the ASTM standards. For the sake of comparison, purification using zeolite and water washing method was also investigated. The result indicated that the suggested adsorbent was more successful on purification of the crude biodiesel compared to other methods.  相似文献   

18.
CO2 capture by electrothermal swing adsorption is considered superior over conventional adsorption approaches: temperature swing adsorption and pressure swing adsorption. In this work, the effects of electricity, preheating and flow rate were studied. An increase in energy input by electricity has been found able to improve desorption performance more significantly than an increase in current level. However, higher current level is recommended because it can minimise energy loss while passing electricity. Higher flow rate can also be beneficial due to the improved desorption rate and reduced desorption time. However, there is a drop in CO2 concentration in the effluent gas. When desorption takes place at a high current level, preheating is not required as it extends desorption duration with no obvious improvement in desorption rate. CO2 capture by electrothermal swing adsorption has also been tested with different concentrations of CO2. It is found that electrothermal swing adsorption can be more energy efficient while dealing with higher concentration CO2.  相似文献   

19.
This study uses rate parameters in pseudo-first-order (PFO) and pseudo-second-order (PSO) equations (k1 and k2qe, respectively) to judge the extent for approaching equilibrium in an adsorption process. Out of fifty-six systems collected from the literature, the adsorption processes with a k2qe value between 0.1 and 0.8 min?1 account for as much as 70% of the total. These are classified as fast processes. This work compares the validity of PFO and PSO equations for the adsorption of phenol, 4-chlorophenol (4-CP), and 2,4-dichlorophenol (2,4-DCP) on activated carbons prepared from pistachio shells at different NaOH/char ratios. The activated carbons, recognized as microporous materials, had a surface area ranging from 939 to 1936 m2/g. Findings show that the adsorption of phenol, 4-CP, and 2,4-DCP on activated carbons had a k2qe value of 0.15–0.58 min?1, reflecting the fast process. Evaluating the operating time by rate parameters revealed that k2qe was 1.6–1.8 times larger than k1. These findings demonstrate the significance of using an appropriate kinetic equation for adsorption process design.  相似文献   

20.
A 3D numerical model for gas–solid flow was developed and used to study the sorption enhanced steam methane reforming (SE-SMR) and the sorbent regeneration processes with CaO based sorbent in fluidized bed reactors. The SE-SMR process (i.e., SMR and adsorption of CO2) was carried out in a bubbling fluidized bed. The effects of pressure and steam-to-carbon ratio on the reactions are studied. High pressure and low steam-to-carbon ratio will decrease the conversion of methane. But the high pressure makes the adsorption of CO2 faster. The methane conversion and heat utility are enhanced by CO2 adsorption. The produced CO2 in SMR process is adsorbed almost totally in a relative long period of time in the bubbling fluidized bed. It means that the adsorption rate of CO2 is fast enough compared with the SMR rate. The process of sorbent regeneration was carried out in a riser. An unfeasible residence time is required to complete the regeneration process. Higher temperature makes the release of CO2 faster, but the rate is severely restrained by the increased CO2 concentration in gas phase. The temperature distribution is uniform over the whole reactor. Regeneration rate and capacity of sorbents are important factors in selecting the type of reactors for SE-SMR process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号