首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The paper reviews the environmental, health and safety permitting/regulatory issues presented by CO2 capture and storage (CCS) operations across the full project cycle, and reviews existing regulations in the EU, North America and Australia to assess their applicability to CCS, and identify regulatory gaps.  相似文献   

2.
Carbon capture and storage (CCS) technology has been endorsed by the IPCC and the UK government as a key mitigation option but remains on the cusp of wide-scale commercial deployment. Here we present a technology roadmap for CCS, depicted in terms of external factors and short- and long-term pathways for its development, moving from a demonstration to commercialisation era. The roadmap was been developed through a two-phase process of stakeholder engagement; the second phase of this, a high level stakeholder workshop, is documented here. This approach has provided a unique overview of the current status, potential and barriers to CCS deployment in the UK. In addition to the roadmap graphics and more detailed review, five consensus conclusions emerging from the workshop are presented. These describe the need for a monetary CO2 value and the financing of carbon capture and storage schemes; the lack of technical barriers to the deployment of demonstration scale CCS plant; the role of demonstration projects in developing a robust regulatory framework; key storage issues; the need for a long-term vision in furthering both the technical and non-technical development of CCS.  相似文献   

3.
Public concern over the possibility of migration of stored CO2 to the surface with resulting damage to vegetation or hazard to humans and animals is a matter which will need to be addressed to be able to satisfy likely regulatory requirements for onshore CO2 storage in a number of jurisdictions. While soil CO2 concentration is readily measured continuously and in situ with current technology, the measurement of CO2 flux at depths below the soil A horizon may be a more sensitive and meaningful technique for early detection of a near surface CO2 plume. We describe a system for the continuous measurement of soil CO2 flux at a depth of approximately 1.3 m and present results from three instruments deployed at the Otway Basin Pilot Project in Victoria, Australia and one development system deployed at Sutton, near the Australian Capital Canberra.  相似文献   

4.
Biomass energy and carbon capture and storage (BECCS) can lead to a net removal of atmospheric CO2. This paper investigates environmental and economic performances of CCS retrofit applied to two mid-sized refineries producing ethanol from sugar beets. Located in the Region Centre France, each refinery has two major CO2 sources: fermentation and cogeneration units. “carbon and energy footprint” (CEF) and “discounted cash flow” (DCF) analyses show that such a project could be a good opportunity for CCS early deployment. CCS retrofit on fermentation only with natural gas fired cogeneration improves CEF of ethanol production and consumption by 60% without increasing much the non renewable energy consumption. CCS retrofit on fermentation and natural gas fired cogeneration is even more appealing by decreasing of 115% CO2 emissions, while increasing non renewable energy consumption by 40%. DCF shows that significant project rates of return can be achieved for such small sources if both a stringent carbon policy and direct subsidies corresponding to 25% of necessary investment are assumed. We also underlined that transport and storage cost dilution can be realistically achieved by clustering emissions from various plants located in the same area. On a single plant basis, increasing ethanol production can also produce strong economies of scale.  相似文献   

5.
CO2 capture and storage (CCS) technology is expected to play an important role in the efforts directed toward long-term CO2 emission reduction. This paper analyzes the cost of the geological storage of CO2 in Japan in order to consider future research, development and deployment (RD&D); these would be based on the information of the obtained cost structure. According to the analysis results, the costs, particularly those of the transportation by pipeline and of CO2 injection, strongly depend on the scale of the facilities. Therefore, the distance of the transportation of CO2 should be minimized in the case of small-scale storage, particularly in Japan. In addition, the potential injection rate per well is another key factor for the injection cost. Based on the analyzed cost, the injection cost of the geological storage of CO2 in Japan for individual storage sites is estimated, and the cost–potential curve is obtained. A mixed-integer programming model has been developed to take into account these characteristics of the CCS technology and its adverse effects arising from the scale of economy with regard to the transportation and injection cost for the geological storage of CO2. The model is designed to evaluate CCS and other CO2 mitigation technologies in the energy systems of Japan. With all these adverse effects due to the scale of economy, the geological storage of CO2 will be one of the important options for CO2 emission reduction in Japan.  相似文献   

6.
Carbon Dioxide Capture and Storage (CCS) technology has the potential to enable large reductions in global greenhouse gas emissions, but one of the unanswered questions about CCS is to what extent it will be accepted by the public. To provide insight regarding risk perception as an important component that will influence the public acceptance of CCS, this study discusses different notions of risk and their varying uses by the public, who generally use a social constructivist risk perspective, and risk experts, who generally use a realist perspective. Previous studies discussing the public acceptance of CCS have relied on survey response data and/or focus groups. This study instead uses the psychometric theory of public risk perception to postulate how the public is likely to respond to efforts to use geologic storage of CO2, a component of the CCS architecture. Additionally this paper proposes further actions that could favorably impact the public's perception of risk from geologic storage projects. Through the psychometric analysis this study concludes that the risks of geologic storage are likely to eventually be considered no worse than existing fossil fuel energy technologies. However, since geologic storage of CO2 is a new technology with little operational experience, additional field tests and a demonstrated ability to mitigate problems should they arise will be necessary to improve the public's perception of risk from CCS technologies.  相似文献   

7.
The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snøhvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible. Monitoring and verification technologies have been tested and demonstrated to detect and track the CO2 plume in different subsurface geological environments. By the end of 2008, approximately 20 Mt of CO2 had been successfully injected into saline aquifers by existing operations. Currently, the highest injection rate and total storage volume for a single storage operation are approximately 1 Mt CO2/year and 25 Mt, respectively. If carbon capture and storage (CCS) is to be an effective option for decreasing greenhouse gas emissions, commercial-scale storage operations will require orders of magnitude larger storage capacity than accessed by the existing sites. As a result, new demonstration projects will need to develop and test injection strategies that consider multiple injection wells and the optimisation of the usage of storage space. To accelerate large-scale CCS deployment, demonstration projects should be selected that can be readily employed for commercial use; i.e. projects that fully integrate the capture, transport and storage processes at an industrial emissions source.  相似文献   

8.
Alberta is the province with the largest CO2 emissions in Canada, with approximately two-thirds of emissions originating from large stationary sources. Due to the fortuitous association of large CO2 sources with the storage capacity offered by the underlying Alberta basin, it is expected that large-scale CO2 geological storage in Canada will occur in Alberta first, and both levels of governments are contemplating measures to facilitate implementation. A review of the current provincial and federal legislation and regulations presented in this paper indicates that the existing legal and regulatory regime is reasonably sufficient, with some modifications, to accommodate the active injection phase of CO2 capture and storage (CCS) operations, and the early takers of this new technology. However, governments in Alberta and Canada, and likely everywhere, need to address several pressing issues dealing mainly with the CCS post-operational phase. These issues, reviewed in this paper from an Alberta and Canadian perspective, fall into several categories: jurisdictional, property (ownership), regulatory and liability. Because Alberta is a landlocked province, matters relating to CO2 storage under the seabed will not be addressed here except when discussing matters of jurisdiction and CO2 classification. Possible models for post-injection liability transfer to the state are also presented. Although this review is focused on western Canada conditions, the issues are broad enough to be of interest in other jurisdictions, which may also adopt parts of the legal and regulatory framework that is quite well developed in Alberta.  相似文献   

9.
With rising levels of atmospheric carbon dioxide (CO2), a portfolio of mitigation options is deemed essential as we transition to a low carbon economy. Carbon dioxide capture and storage (CCS) is one technology that has the potential to mitigate large amounts of CO2 and governments around the world, along with industry and researchers working in the technology space, are excited by this. However, the technology still remains relatively unknown in the minds of most lay citizens and is therefore less well accepted than more traditional forms of power generation. This paper reviews a number of CCS communication research activities that have been undertaken internationally since 2002 and synthesizes them into a logical roadmap of activities. The paper also examines the common strengths and weaknesses of the research activities and makes a number of suggestions for industry representatives and policy makers. The paper also outlines a way to segment stakeholder groups for all communication activities into four target audiences including: influential others; community; education and project specific activities.  相似文献   

10.
This paper summarizes the results of a first-of-its-kind holistic, integrated economic analysis of the potential role of carbon dioxide (CO2) capture and storage (CCS) technologies across the regional segments of the United States (U.S.) electric power sector, over the time frame 2005–2045, in response to two hypothetical emissions control policies analyzed against two potential energy supply futures that include updated and substantially higher projected prices for natural gas. This paper's detailed analysis is made possible by combining two specialized models developed at Battelle: the Battelle CO2-GIS to determine the regional capacity and cost of CO2 transport and geologic storage; and the Battelle Carbon Management Electricity Model, an electric system optimal capacity expansion and dispatch model, to examine the investment and operation of electric power technologies with CCS against the background of other options. A key feature of this paper's analysis is an attempt to explicitly model the inherent heterogeneities that exist in both the nation's current and future electricity generation infrastructure and in its candidate deep geologic CO2 storage formations. Overall, between 180 and 580 gigawatts (GW) of coal-fired integrated gasification combined cycle with CCS (IGCC + CCS) capacity is built by 2045 in these four scenarios, requiring between 12 and 41 gigatonnes of CO2 (GtCO2) storage in regional deep geologic reservoirs across the U.S. Nearly all of this CO2 is from new IGCC + CCS systems, which start to deploy after 2025. Relatively little IGCC + CCS capacity is built before that time, primarily under unique niche opportunities. For the most part, CO2 emissions prices will likely need to be sustained at over $20/tonne CO2 before CCS begins to deploy on a large scale within the electric power sector. Within these broad national trends, a highly nuanced picture of CCS deployment across the U.S. emerges. Across the four scenarios studied here, power plant builders and operators within some North American Electric Reliability Council (NERC) regions do not employ any CCS while other regions build more than 100 GW of CCS-enabled generation capacity. One region sees as much as 50% of its geologic CO2 storage reservoirs’ total theoretical capacity consumed by 2045, while most of the regions still have more than 90% of their potential storage capacity available to meet storage needs in the second half of the century and beyond. A detailed presentation of the results for power plant builds and operation in two key regions: ECAR in the Midwest and ERCOT in Texas, provides further insight into the diverse set of economic decisions that generate the national and aggregate regional results.  相似文献   

11.
Enhanced oil recovery (EOR) through CO2 flooding has been practiced on a commercial basis for the last 35 years and continues today at several sites, currently injecting in total over 30 million tons of CO2 annually. This practice is currently exclusively for economic gain, but can potentially contribute to the reduction of emissions of greenhouse gases provided it is implemented on a large scale. Optimal operations in distributing CO2 to CO2-EOR or enhanced gas recovery (EGR) projects (referred to here collectively as CO2-EHR) on a large scale and long time span imply that intermediate storage of CO2 in geological formations may be a key component. Intermediate storage is defined as the storage of CO2 in geological media for a limited time span such that the CO2 can be sufficiently reproduced for later use in CO2-EHR. This paper investigates the technical aspects, key individual parameters and possibilities of intermediate storage of CO2 in geological formations aiming at large scale implementation of carbon dioxide capture and storage (CCS) for deep emission reduction. The main parameters are thus the depth of injection and density, CO2 flow and transport processes, storage mechanisms, reservoir heterogeneity, the presence of impurities, the type of the reservoirs and the duration of intermediate storage. Structural traps with no flow of formation water combined with proper injection planning such as gas-phase injection favour intermediate storage in deep saline aquifers. In depleted oil and gas fields, high permeability, homogeneous reservoirs with structural traps (e.g. anticlinal structures) are good candidates for intermediate CO2 storage. Intuitively, depleted natural gas reservoirs can be potential candidates for intermediate storage of carbon dioxide due to similarity in storage characteristics.  相似文献   

12.
The extent of social acceptance of carbon capture and storage (CCS) is likely to significantly influence the sustainable development of CO2 storage projects. Acceptance of CCS by the key stakeholders (policy makers, the general public, the media and the local community), linked to specific projects, as well as how the technology is communicated about and perceived by the public, have become matters of interest for the social sciences. This article reports on an investigation of the public perception of CCS technology in Spain. Individuals’ views on CCS are analysed through focus groups with lay citizens using “stimulus materials”. As the analysis shows, lay views of CCS differ significantly from the views of decision-makers and experts. Public concerns and reactions to CCS technology and potential projects, as well as the degree of consensus on its acceptance or rejection are detailed. Implications for the future use of CCS are discussed.  相似文献   

13.
The identification of risks associated with the geological storage of CO2 requires methods that can analyse and assess potential safety hazards. This paper evaluates how performance assessment can be used as a method for assessing the impact of CO2 storage on health, safety and the environment (HSE) with particular respect to potential future aquifer storage in the anticlinal structure Schweinrich in Germany. The performance assessment was conducted under the CO2STORE European Fifth Framework project as one of the four cases on the aquifer storage of CO2. It is known as the Schwarze Pumpe case study.Being a case study, it is restrictive from a feasibility study point of view—i.e., the extended identification of the key safety factors where an actual CO2 storage project would be considered for the Schweinrich structure. The study is based on data currently available, gathered in prior surveys, and on the use of simplified models, with CO2 leakage levels from natural analogues being the evaluation criteria. While the results should be interpreted as provisional, they point out clearly which additional data should be gathered in relation to the long-term storage performance in the event that the site warrants further investigation.  相似文献   

14.
The In Salah Gas Joint Venture CO2 storage project has been in operation in Algeria since 2004 and is currently the world's largest onshore CO2 storage project. CO2 is injected into the saline aquifer of a gas reservoir several kilometres away from the gas producers. Current focus in the project is on implementing a comprehensive monitoring strategy and modelling the injection behaviour in order to ensure and verify safe long-term storage. A key part of this effort is the understanding of the processes involved in CO2 migration within relatively low-permeability sandstones and shales influenced by fractures and faults. We summarise our current understanding of the fault and fracture pattern at this site and show preliminary forecasts of the system performance using discrete fracture models and fluid flow simulations. Despite evidence of fractures at the reservoir/aquifer level, the thick mudstone caprock sequence is expected to provide an effective flow and mechanical seal for the storage system; however, quantification of the effects of fracture flow is essential to the site verification.  相似文献   

15.
In Part 1, we presented the findings of the EU ACCSEPT project (2006–2007) with regards to scientific, technical, legal and economic issues. In Part 2, we present the analysis of social acceptability on the part of both the lay public and stakeholders. We examine the acceptability of CO2 capture and geological storage (CCS) within the Clean Development Mechanism (CDM) of the Kyoto Protocol. The debate over the inclusion of CCS within the CDM is caught-up in a set of complex debates that are partly technical and partly political and, therefore, difficult, and time-consuming, to resolve. We explore concerns that support for CCS will detract from support for other low-carbon energy sources. We can find no evidence that support for CCS is currently detracting from support for renewable energy sources, though it is probably too early to detect such an effect. Efforts at understanding, engaging with, and communicating to, the lay public and wider stakeholder community (not just business) in Europe are currently weak and inadequate, despite well-meaning statements from governments and industry.  相似文献   

16.
A geomechanical assessment of the Naylor Field, Otway Basin, Australia has been undertaken to investigate the possible geomechanical effects of CO2 injection and storage. The study aims to evaluate the geomechanical behaviour of the caprock/reservoir system and to estimate the risk of fault reactivation. The stress regime in the onshore Victorian Otway Basin is inferred to be strike–slip if the maximum horizontal stress is calculated using frictional limits and DITF (drilling induced tensile fracture) occurrence, or normal if maximum horizontal stress is based on analysis of dipole sonic log data. The NW–SE maximum horizontal stress orientation (142°N) determined from a resistivity image log is broadly consistent with previous estimates and confirms a NW–SE maximum horizontal stress orientation for the Otway Basin.An analytical geomechanical solution is used to describe stress changes in the subsurface of the Naylor Field. The computed reservoir stress path for the Naylor Field is then incorporated into fault reactivation analysis to estimate the minimum pore pressure increase required to cause fault reactivation (ΔPp).The highest reactivation propensity (for critically-oriented faults) ranges from an estimated pore pressure increase (ΔPp) of 1 MPa to 15.7 MPa (estimated pore pressure of 18.5–33.2 MPa) depending on assumptions made about maximum horizontal stress magnitude, fault strength, reservoir stress path and Biot's coefficient. The critical pore pressure changes for known faults at Naylor Field range from an estimated pore pressure increase (ΔPp) of 2 MPa to 17 MPa (estimated pore pressure of 19.5–34.5 MPa).  相似文献   

17.
18.
Remote sensing has demonstrated success in various environmental applications over the past three decades. This is largely attributed to its ability for good areal coverage and continued development in sensor technologies. Carbon dioxide Capture and Storage (CCS) is an emerging climate change mitigation technology where monitoring is vital for its sustainability. This research investigates the use of spectral remote sensing imagery in detecting potential CO2 occurrences at the surface, should a leakage occur from subsurface reservoirs where CO2 is stored. Currently, there are no known leakages of CO2 at industrial storage sites, therefore, this research was carried out at the Latera natural analogue site in Italy, in order to develop the methodology described. This paper describes the use of a popular probabilistic information fusion theory, referred to as the Dempster–Shafer theory of evidence, to analyse outlier pixels (anomalies). Outlier pixels are first determined using a new geostatistical image filtering methodology based on Intrinsic Random Function (IRF), Independent Component Analysis (ICA), and the industry standard parametric Reed–Xiaoli (RX) anomaly detection. Information fusion of detected outlier pixels and indirect surface effects of CO2 leakage over time, such as stressed vegetation or mineral alterations, assigns a confidence measure per outlier pixel in order to identify potential leakage points. After visual validation using direct field measurements, it was demonstrated that the proposed methodology is able to detect majority of the seepage points at Latera, and holds promise as a new unsupervised CO2 monitoring methodology.  相似文献   

19.
20.
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号