首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 171 毫秒
1.
于2011~2012年度及2012~2013年度开展小麦开花后渍水试验,研究开花后渍水对小麦产量的影响及渍水前喷施6-苄氨基腺嘌呤(6-BA)对产量的效应。结果表明,2011~2012年度及2012~2013年度江汉平原小麦开花期至成熟期均有持续降水分布,其中2011年4~5月累计降雨量达1941 mm,2012年同期累计降雨量达2855 mm,表明江汉平原小麦生殖生长期有较大渍害风险。本试验研究表明,开花后渍水,小麦植株衰老进程加速,叶片严重早衰失绿,旗叶光合速率降低;渍水前喷施6-BA,可缓减叶片衰老趋势,缩小旗叶光合速率降低幅度。开花后渍水亦导致根系活力降低,渍水前喷施6-BA可缓减根系活力降低,其中至灌浆中期,渍水处理根系活力仅为对照的563%,6-BA+渍水处理根系活力较渍水处理提高66%,差异达显著水平。渍水处理生物产量及籽粒产量均显著低于对照,渍水前喷施6-BA,生物产量、籽粒产量较渍水处理比较均有所提高,其中生物产量较渍水处理提高77%,籽粒产量提高137%。总之,在本试验条件下,开花后渍水导致光合速率、根系活力、生物产量、籽粒产量等显著降低,渍水前喷施6-BA可在一定程度上缓减渍害效应,在渍害发生后促进籽粒产量形成,据2011~2012年度及2012~2013年度产量结果估算,渍水前喷施6-BA相当于每6667 m2可减少427 kg 产量损失,即约1/3以上的田块未发生渍害  相似文献   

2.
杂交水稻对淹水胁迫的响应及排水指标研究   总被引:1,自引:0,他引:1  
湖北平原地区夏季强降水频发,稻田易受洪涝灾害。为探明淹水胁迫对杂交中稻生长发育的影响,并在此基础上提出相应的排涝指标,在杂交中稻(丰两优香1号)分蘖期、孕穗期分别设计了淹水深度和淹水时间交互试验。结果表明:淹水处理后,水稻株高、第3、4节间均表现出伸长生长,且与淹水深度和持续时间的累积值(SD)呈显著线性正相关关系,但收获时遭受淹水的各处理其株高均矮于对照,且淹水程度越重,收获时株高越矮。淹水造成水稻减产,且淹水时间越长,淹水深度越深,减产越严重,若以产量受害指标为评价标准,孕穗期对淹水胁迫较分蘖期更敏感。就产量构成要素来看,分蘖期淹水胁迫导致水稻减产主要是有效穗下降、其次是结实率降低;孕穗期主要是结实率、千粒重下降,其次是有效穗减少。以相对产量(Ry)为参数建立的回归方程极显著地展示了Ry与SD、Ry与淹水深度和淹水时间之间的关系,可以作为水稻分蘖期、孕穗期的排涝方程。就淹水要素来说,分蘖期淹水深度对产量的影响比淹水时间大,而孕穗期淹水深度、淹水时间对产量的影响相当。若以水稻减产20%~30%作为排涝标准,分蘖期、孕穗期相应的SD值为1106~1944 cm/d(淹水深度≥18 cm)、265~805 cm/d(淹水深度≥25 cm),并就具体的淹水深度提出了确切的排涝天数  相似文献   

3.
水稻灌浆结实期气象条件同时影响优质稻产量与品质,因此在生产上调整合适的播种日期对优质稻生产至关重要。以10个优质稻品种为材料,在江汉平原腹地的湖北荆州通过分期播种(C1、C2、C3),使其在灌浆结实期经历不同的气象条件,并比较了不同播期下产量和主要品质指标的变化,及其与气象因子之间的关系。结果表明,灌浆期的前15 d气象条件显著影响优质稻产量和品质。从总体上看,产量以第2播期-C2(8.3 t/hm2)最高,C2处理具有更高的地上部干物质积累量、穗粒数和结实率;品质指标中,整精米率以播期C2和C3较优,分别为62.1%、和61.8%;垩白度在3个播期间差异不大;大多数品种的直链淀粉含量则随播期延迟而显著升高。籽粒产量和稻米品质与灌浆期关键气象因子关系密切,产量与灌浆期前15 d各气象因子均显著相关;千粒重与灌浆期各气象因子均呈直线相关,其中与气温日较差、日照时数呈正相关,与相对湿度呈负相关;整精米率与灌浆期各气象因子之间均为开口向下的“抛物线型”关系;因此,经过筛选得到灌浆期的前15 d期间的日均温26℃左右、日较差9℃、相对湿度85%、日照时数6 h左右是实现优...  相似文献   

4.
长期有机物循环对红壤稻田养分及水稻生长的影响   总被引:1,自引:0,他引:1  
通过长期有机物循环的定位试验,研究了长期有机物循环利用对红壤稻田养分供应及水稻生长发育的影响,目的是了解长期有机物循环利用后土壤养分含量变化、水稻生长特性及两者的相关性。结果表明有机物循环明显提高了土壤有机质含量,并使土壤养分维持在一个相对较高的水平上。有机物循环处理的土壤有机质,全N、全P和全K及其有效部分的平均含量分别比无循环处理提高了445%、347%、175%、94%,特别是碱解N,速效P和速效K含量提高显著,有机物循环处理比无循环处理提高达469%、452%和347%。有机物循环利用提高了水稻分蘖数和叶面积指数,使水稻群体的透光率减少。有机物循环处理平均单叶净光合速率比无循环处理高68%,蒸腾作用比无循环处理高50%,最终表现为干物质积累量及稻谷产量的增加。对长期有机物循环利用后的红壤稻田养分指标与水稻生长指标进行逐步回归分析后发现,土壤中速效P及有机质含量的增加是促进水稻生长的主要因素.  相似文献   

5.
在上海市城市河岸带人工绿地建设了微区径流场,进行了5次模拟降雨径流实验,研究了人工绿地岸带下渗流中氮浓度和去除率的时空变化。结果表明:人工绿地岸带对垂直下渗流中氮有显著的净化作用,且主要集中于土壤的0~30 cm以内,TN和NH4+去除率在399%和398%以上,NO3-+NO2-去除率除11月为负值外,其余月份均在100%以上;在30~60 cm深度,由于土壤氮的析出导致径流中氮浓度增加,去除率降低;而60~90 cm深度的去除率增加。径流场内下渗流中氮浓度具有明显的水平空间变化,随距入水端距离的增加,30 cm深度下渗流中氮浓度先上升后下降;人工绿地岸带对下渗流中氮的净化作用均随淹水时间的延长呈降低趋势,且季节变化明显,在10月和4月具有较高的去除率,0~30 cm内TN、NH4+和NO3-+NO2-的去除率可分别达635%、891%和416%以上  相似文献   

6.
长江靖江段刀鲚捕捞量的时间变化及相关环境因子分析   总被引:3,自引:0,他引:3  
江苏靖江段位于长江近口段,是长江刀鲚渔汛最集中的水域。调查了靖江段2008、2009、2012~2015年6个渔汛期的捕捞数据,采用广义可加模型(GAM模型)分析了刀鲚捕捞量与靖江段表层水温、潮差、气压、降水量、浑浊度、CODMn等环境因子之间的相关性。调查显示,靖江段每年发放刀鲚专项渔业捕捞证84~95本,平均年作业天数28~43 d,2012~2015年的作业天数比2008~2009年明显下降。6个渔汛期刀鲚的年捕捞量变幅为3.71~17.38万尾和3.61~18.26 t,除2013年外,年捕捞量总体上仍呈下降趋势。采用GAM模型对10艘持证渔船的刀鲚日捕捞量与环境因子之间的相关性分析显示,日捕捞量随水温的升高而递增,汛期78.8%的产量在15~23.2℃水温范围获得。而当水温低于10℃时,空网率上升,仅获得5.7%的汛期产量。表明当水温不足10℃时,刀鲚可暂时停止其生殖洄游过程。分析还显示,69.1%的汛期产量在2.0 m以上的大潮差期获得,表明潮汐亦是影响刀鲚日捕捞量的重要因子。低浊度及气压、降水量、CODMn等对刀鲚的日捕捞量无显著性影响,但当浊度大于100 NTU时,日捕捞量迅速降低。可见,水温、潮差和高浑浊度是影响长江靖江段汛期刀鲚捕捞量的关键环境因子。  相似文献   

7.
周年磷肥旱季集中底施对玉-稻轮作磷肥效应的影响   总被引:1,自引:0,他引:1  
春玉米-晚稻水旱轮作是近年来南方稻区种植制度变化下出现的新型两熟制模式。明确两季作物间磷肥的合理分配对玉-稻轮作作物产量与磷素利用效率的影响,对玉-稻轮作养分高效与高产协同实现,及丰富对水旱轮作前后季作物养分利用关系的认识具有理论意义。采用春玉米-水稻周年轮作田间试验,根据晚稻季磷肥前移至玉米季做底肥施用的比例及周年施磷量,设置7个磷肥施用处理,分别为两季作物均不施磷(P_0)、两季作物均按常规方法施磷(P_1)、1/3晚稻季磷肥前移(P_2)、2/3晚稻季磷肥前移(P_3)、全部晚稻季磷肥前移(P_4)、全部晚稻季磷肥前移且周年总施磷量减少15%(P_5)、全部晚稻季磷肥前移且周年总施磷量减少30%(P_6),分析了不同施磷处理作物产量、磷素吸收量及磷素利用效率的变化。与P_1相比,P_3与P_4处理显著提高了晚稻花后干物质的分配比例及晚稻产量,且其周年产量分别提高了4.87%和6.74%;P_5处理晚稻产量与P_1处理差异不显著,但P_6显著降低了晚稻产量。晚稻季磷肥前移施用明显促进了玉米及晚稻对磷素的吸收,显著降低了磷素的表观盈余量。与P_1处理相比,P_2、P_3、P_4处理两季作物周年土壤磷素依存率分别减少了11.63%、26.47%与22.08%。从磷肥利用效率看,P_4处理的磷肥周年累积回收效率、农学利用效率、偏生产力及磷肥产量贡献率均显著高于P_1处理,分别提高了102.46%、194.83%、6.73%与176.16%。与P_1处理相比,P_5处理周年磷肥产量贡献率及农学利用效率差异不显著,但分别提高了其磷肥回收效率与偏生产力32.56%和58.05%。玉米季施用的磷肥对晚稻有明显的后效作用,且比晚稻季施用磷肥具有更高的磷肥利用效率。所以在春玉米免耕复种晚稻时,可将晚稻季的磷肥全部前移至玉米季施用,并可减少15%周年施磷量。  相似文献   

8.
长江从宜昌至湖口为中游,全长900 km,其间有四湖地区、洞庭湖区和鄱阳湖区,为湿地集中地带。 
(1) 四湖地区〓位于荆江北岸,属江汉平原,是长江出三峡后第一个大平原湖区,包括长湖、三湖、白露湖和洪湖,总面积原有11000 km2,现有1793 km2,耕地面积约454万hm2,人口450万。荆江河水通过新滩口排水闸汇入长江,汛期关闸,靠电力抽排渍涝,枯季开闸自流排水。长江对地下水侧向补给是地下水主要来源。
四湖地区是湖北的“水袋子”,历史上长江、汉江洪水多次在此决堤泛滥。四湖下游江湖相通,每到汛期,长江、汉江洪水倒灌,形成洪泛区。湖区围垦耕地约7万hm2,地势低洼,多为湖积淤泥,排水不畅,存在潜育型、沼泽型渍害。
(2) 洞庭湖区〓位于荆江南岸,总面积原有18730 km2,1950年时有4350 km2,由于不断围湖垦殖,现仅有2691 km2,耕地面积533万hm2,高程在43~26 m。湖区水网密布,土地肥沃,历来为鱼米之乡。洞庭湖为过水性湖泊,接纳湘、资、沅、澧四水和长江松滋、太平、藕池三口来水,由城陵矶注入长江。近百年来,由于长江泥沙沉积湖内,加之围湖垦殖,湖泊容积显著减少,洪涝灾害日趋严重。
(3) 鄱阳湖区〓位于长江南岸,鄱阳湖是我国最大的淡水湖泊,总面积3900 km2,耕地面积约37万hm2,高程在16 m以上。接纳赣、抚、信、饶、修五河来水,经湖口注入长江。湖区16 m以下大多为湖草滩地,已垦耕地一般在湖水退落后种植,汛期湖水涨落频繁,汛后淤积,土质粘性较重,有机物含量高,地势低洼,排水不畅,耕地土壤脱潜过程缓慢。
人类历史活动,从原始游牧狩猎部落演进为农业定居聚落。江汉平原的湿地主体是“云梦泽”,洞庭湖平原的湿地主体是“江南之梦”,春秋战国时期均为楚国皇家猎区。两个湿地生物多样性丰富,生活着大象、犀牛、麋鹿、扬子鳄等。随着历史变迁,水陆交错型湿地逐渐转化为农业用地和聚落用地,最终成为人工湿地和水体湿地。13世纪后,人类开始围湖造田,与水争地。汉朝时代的大象、犀牛灭绝,宋代后成为老虎栖息地,湿地生态结构转为以湖泊湿地为主,成为水禽栖息地和越冬地,生活着天鹅、野鹤、鸳鸯、家雁等,17~18世纪时老虎绝迹,水禽亦成为濒危物种。由于围湖垦殖,人水争地,自然湿地中70%转化为耕地,多样性损失严重,洪涝灾害不断。1998年长江大洪灾后,中央提出 “封山育林、退耕还林、退田还湖、平垸行洪、以工代赈、移民建镇、加固干堤、疏浚河道” 32字方针,其关键是退耕还林、退田还湖,旨在恢复生态。 
  根据历史记载,堤垸始于春秋,南宋时形成围垦高潮,围湖造田普遍。20世纪50年代以来,人口剧增,“以粮为纲” 驱动围垦新高潮,堤垸经济蓬勃发展,带来生态失衡,人水矛盾。必须协调耕地保护与湿地保护矛盾,推行科学耕种和农、牧、渔协调发展,确保湿地总量动态平衡。长江中游江汉平原及两湖地区,河网交错,湖泊密布,应多建国家级自然保护区,争列《国际重要湿地名录》,逐步扩大湿地保护范围,滋润地球之“肾”;发展生态旅游,保护生态环境,重建湿地生物、景观和文化多样性,促进湿地可持续发展。
三峡建库后,长江枯季1~5月份下泄流量有所增加,水位将略有抬高,但仍在建库前天然水位变幅范围内;10月份水库蓄水,下泄流量减少,但三峡水库将实施人工实时调度,确保中下游生产、生活及航运用水需求。四湖地区潜育型、沼泽型渍害农田主要在总干渠两侧的湖盆地带,远离长江,地下水位不受长江水位变化影响,排水状况也不会改变,三峡建库后不会加剧这些地区农田潜育化、沼泽化。10月后水库蓄水,长江水位降低,有利于四湖地区汛后排涝排渍,提前降低湖、田水位和农田地下水位。 三峡建库后,洞庭湖泥沙淤积将会减少,可延长湖泊寿命。长江枯季下泄流量有所增加,城陵矶水位略有升高,但湖区水位仍低于圩区地面3~4 m,不会影响湖区农田自排。每年10月水库蓄水,下泄流量减少,城陵矶附近江水位比建库前降低2 m,湖区水位可尽快退落,对洞庭湖汛后排涝排渍有利。三峡建坝后如遇长江干流发生特大洪水,经三峡水库调蓄后,可减少鄱阳湖及中下游平原湖区分洪的负担和损失。遇鄱阳湖水系发生大洪水时,还可减少下泄流量,降低湖口水位,有利鄱阳湖水排入长江。每年10月三峡水库蓄水,鄱阳湖可提前退水,有利于湖区农田排涝排渍。1~4月下泄流量比建库前略有增加,湖口水位抬升不超过0.6 m,湖区农田地面仍高出长江水位3 m以上,既不会影响枯季排水,也不会加重湖区土壤的地下渍害。
由于三峡建库后,水位随洪、枯季节调蓄变化,结合中下游平原湖区排灌抽提,湖水交换相对频繁,促使水生生物生长茂盛,为水体稀释自净,消纳降解污染提供有利条件。三峡工程建成后,防洪、发电、航运等综合效益和有利影响将得到充分发挥,并采取有效措施,使不利影响得到减免。随着时间的推移,水利、水电、航运、农业、水产、湿地及自然资源的逐步开发,环境保护和湿地保护必将统筹安排、综合利用、协调发展。三峡工程将有力地保护湿地、保护环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号