首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为获得西安市道路PM2.5、NO2和CO的水平浓度分布特征,选取小寨和秦岭环山路作为西安市城区道路和郊区道路的代表,采用水平分布的监测方法获得了每条道路距离道路边缘0、15和50 m处的ρ(PM2.5)、ρ(NO2)和ρ(CO).结果表明:与秦岭环山路(下称秦岭)相比,城区观测点小寨的ρ(PM2.5)、ρ(NO2)和ρ(CO)分别为(88±50)(78.6±29.8)μg/m3和(1.5±0.3)mg/m3,均高于秦岭三者的质量浓度[分别为(55±23)(47.9±19.8)μg/m3和(1.4±0.1)mg/m3].在空间分布上,ρ(PM2.5)、ρ(NO2)、ρ(CO)水平梯度分布明显.与距离道路边缘0 m处相比,小寨ρ(PM2.5)在距离道路边缘15和50 m处分别减少了6.48%、7.96%,秦岭减少了5.45%、9.09%;小寨ρ(NO2)在15和50 m处分别减少了8.57%、14.29%,秦岭减少了15.45%、24.89%;在距离道路边缘50 m处小寨ρ(CO)减少了25.00%,而秦岭在距离道路边缘15和50 m处分别减少了25.00%、41.67%.研究显示,来自于机动车排放的PM2.5、NO2和CO在道路两侧有明显的距离效应,并且郊区观测点水平递减更明显.   相似文献   

2.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

3.
近10年海南岛大气NO2的时空变化及污染物来源解析   总被引:4,自引:0,他引:4  
利用OMI卫星反演的NO2柱浓度数据,分析了近10年海南岛对流层NO2柱浓度(Tro NO2)和总NO2柱浓度(Tot NO2)的时空变化,同时结合地面风向、SO2排放资料,以及HYSPLIT模式等探究其大气污染物来源.结果表明,海南岛地区大气NO2呈北半部高于南半部、中部山区低于四周沿海的分布特征,其季节变化表现为冬季高、夏季低的特点,其中夏季浓度偏低和雨水的冲刷作用有关,而冬季浓度偏高与珠江三角洲地区的外源输送作用有密切联系.近10年海南岛大气NO2冬夏季有相反的变化趋势,冬季逐年下降,夏季则有弱的上升趋势.其原因可能是夏季大气污染物以本地排放为主,冬季外源输送起主要贡献作用.海口市Tro NO2与珠江三角洲地区的有利风向日数相关系数为0.84,通过了99%的信度检验.后向轨迹分析表明,2013年12月影响海口市的3条气流移动路径,均不同程度的经过珠江三角洲地区,进一步表明海南岛冬季大气污染物主要以珠江三角洲地区的外源输送为主.  相似文献   

4.
为探讨石家庄市NO2柱浓度时空分布及潜在污染源区,该文利用2019-2021年L2级别的TROPOMI二氧化氮数据、石家庄市8个国控点环境自动监测站的NO2、O3、PM2.5浓度数据和气象要素数据以及全球数据同化系统中的气象数据,对石家庄市NO2时间变化、空间分布、污染传输通道城市以及潜在源贡献区进行分析。结果表明:石家庄市NO2浓度年内变化趋势呈“U”型,季节性明显,NO2浓度冬季(13.33×1015molec/cm2)>秋季(12.76×1015molec/cm2)>春季(4.96×1015molec/cm2)>夏季(4.09×1015molec/cm2);NO2浓度空间表现为“主城区高、四周低”的椭圆带状分布,并形...  相似文献   

5.
采用观测与数值模拟相结合的方法并查阅大量文献,系统分析了北京市SO_4~(2-)时空分布、转化及来源特征,结果表明:近年来北京市SO_4~(2-)年均浓度在8.85~25.13μg/m3;2013年北京市SO_4~(2-)浓度整体呈现出重污染日>冬季>春、秋季>夏季的特征,日变化上SO_4~(2-)浓度呈现双峰型分布,空间分布上SO_4~(2-)浓度呈南北梯度分布特征;2013年北京市SOR年均值在0.36~0.44,重污染日SOR平均值在0.40~0.46;2013年北京市年均SO_4~(2-)本地、外来源、背景及边界条件分别贡献34%、57%、9%;重污染日SO_4~(2-)本地、外来源、背景及边界条件分别贡献18%、77%、5%;外来源对北京市SO_4~(2-)浓度起着更为重要的作用。  相似文献   

6.
2012年8月~2013年7月,在北京市包括城市背景、城区、郊区以及边界传输点在内的9个监测点位进行大气细颗粒物PM2.5样品的采集与分析,共获得486个有效样本及9种水溶性离子的质量浓度.观测期间9种水溶性离子总质量浓度为60.5μg·m-3,浓度水平高低顺序分别为NO-3SO2-4NH+-4Cl-Na+K+Ca2+F-Mg2+;其中SO2-4、NO-3和NH+4(三者简称SNA)占全部所测水溶性离子的88%;NO-3是全年波动范围最大的二次离子.对所测阴、阳离子相关性研究发现,阴、阳离子总体相关性良好,春、冬季阴、阳离子相关性要好于夏、秋季.对不同颗粒质量级别中的水溶性离子研究发现,SNA积累活跃,相对于SO2-4的积累,NO-3和NH+4在二次离子的形成过程中占据主导地位;NO-3是重污染过程累积效应比较明显且贡献相对较高的二次离子.  相似文献   

7.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中.  相似文献   

8.
文章基于PM2.5遥感反演数据和人口格网分布数据,构建人口暴露风险指数模型,采用Theil-Sen Median与Mann Kendall检验法,识别2000-2020年间黄河流域PM2.5质量浓度值和人口暴露风险指数时间演化特征,通过空间探索工具,刻画其空间变化特征。研究结果表明:(1)PM2.5质量浓度平均值为46.53μg/m3,研究期内呈现出“快速增长—波动变化—持续下降”的态势。PM2.5污染不同等级面积比例变化明显,总体呈现出高浓度区域减少、低浓度区域增加的态势。(2)PM2.5年均质量浓度空间上东高西低。历年PM2.5年均质量浓度空间局部自相关显著。低值区域主要分布在青海、甘肃、宁夏、内蒙古等省份。高值区域集中分布在山西南部、陕西关中地区、河南中部、山东北部区域。(3)除2000年和2020年外,研究时段内均有90%以上人口暴露于PM2.5年均质量浓度35μg/m3限值以上,且...  相似文献   

9.
利用OMI卫星数据,分析了2005~2009年渤海对流层NO2的时空分布特征,研究发现近5 a渤海海域对流层NO2浓度空间分布不均,季节变化及年度增长趋势明显。空间分布上渤海西南部的渤海湾及莱州湾等海域浓度比较大,而东北部的辽东湾浓度比较低;NO2浓度季节变化也非常大,12月份垂直柱浓度(13.464×1015mol/cm2)是8月份(4.959×1015mol/cm2)的2.7倍。分析渤海湾与其周边的京津塘、环渤海西南部地区NO2浓度的月变化,发现冬季京津塘地区对渤海NO2浓度影响比较大,而夏季环渤海西南部地区对其影响比较大。  相似文献   

10.
运用OMI卫星遥感资料对河南省2005~2018年NO2柱浓度的时空分布进行分析,并结合国家大气污染防治政策的实施,研究了2013年之后河南省NO2柱浓度的变化特征.结果表明,河南省NO2柱浓度的空间分布为东北高、西南低,高值和低值中心分别位于安阳-新乡-焦作一带(>18.0×1015molec/cm2)和洛阳-三门峡-南阳市交界(4.0~8.0)×1015molec/cm2.从季节变化来看,冬季NO2柱浓度高于春夏季,冬季高值中心的浓度较春夏高50%~70%.在2011年前,河南省NO2柱浓度不断上升,北部较南部增速快.2011年后全省NO2柱浓度明显下降,焦作-新乡-安阳一带下降最快,主要污染物总量减排和大气污染防治行动计划的实施有效促进了浓度的下降.《大气污染防治行动计划》实施后,与位于京津冀大气污染传输通道的城市相比,传输通道外的城市NO2柱浓度下降速度慢甚至略有增长,应进一步加大其大气污染防治力度.  相似文献   

11.
2013年北京市NO_2的时空分布   总被引:2,自引:2,他引:2  
对2013年北京市35个自动空气质量监测子站的NO2数据进行分析,探讨NO2的时间分布特征、空间分布特征以及与PM2.5和大气氧化性的相关性关系.结果表明,NO2浓度由高到低的季节依次是冬季、秋季、春季和夏季,平均浓度分别为66.6、58.3、54.7μg·m-3和45.8μg·m-3;NO2浓度由高到低的监测站依次为交通站、城区站、郊区站和区域站,年均浓度分别为78.6、57.9、48.5μg·m-3和40.3μg·m-3.NO2月均浓度呈波浪型分布,在1月份、3月份、5月份和10月份各出现一个峰值.整体来看,区域站NO2日变化曲线呈现单峰型分布,其他站点为双峰型分布.2013年NO2浓度呈现"反周末效应",即周末大部分时段NO2浓度高于工作日.分地区来看,年均NO2浓度由高到低的依次是城六区、西南部、东南部、西北部和东北部.各站点NO2浓度与PM2.5和OX浓度均为显著正相关,表明NO2可以通过增加前体物浓度和增强大气氧化性两方面造成PM2.5浓度升高.  相似文献   

12.
针对北京地区冬季和春季PM2.5污染特征进行研究.于2009年12月~2010年5月在城市点采集24h 大气颗粒物样品,进行颗粒物主要化学组分分析.冬季和春季颗粒物的平均质量浓度分别为(84.97±68.98)μg/m3和(65.25±45.76)μg/m3.冬季和春季颗粒物中二次组分(SNA+SOA)有重要贡献,二次组分分别占颗粒物质量浓度的49%和47%.冬春季重污染时期较强的源排放和低温、低风速、高相对湿度等不利的气象特征使得颗粒物中二次无机离子SNA(NH4+、NO3-、SO42-)的比重较干净天明显上升,其中硝酸盐贡献的增强最为显著.同时冬春季有机物中二次有机组分贡献显著.而受一次源的影响,冬春季重污染时期一次有机物的增强.  相似文献   

13.
2013~2014年北京大气重污染特征研究   总被引:30,自引:0,他引:30  
从污染物浓度的时间变化、空间分布以及大气污染类型等方面,对2013~2014年北京大气重污染过程进行了分析,并初步探讨其影响因素.结果表明:2013~2014年北京共出现大气重污染105d,重污染频率为14.4%.其中,首要污染物为PM2.5的天数为103d,首要污染物为PM10和O3各有1d;冬半年重污染天数占全年的76.2%.重污染气象要素特征主要表现为风速小、湿度高、能见度低.重污染日PM2.5/PM10浓度比值为91.3%,明显高于全年平均水平,表明重污染时颗粒物以细颗粒物为主.北京大气重污染区域分布表现为南高北低,平原高、山区低的总体特征,交通站重污染天数普遍高于市区其它站点.北京大气重污染主要表现为积累型、光化学型、沙尘型以及复合型等类别;其中积累型大气重污染往往伴有区域污染水平的整体升高,PM2.5组分中NO3-、SO42-、NH4+等水溶性二次离子的浓度增幅最为明显;O3污染在近两年有加重的趋势.  相似文献   

14.
运用Models-3/CMAQ模式系统,模拟分析了2014年11月3~11日APEC会议期间北京市PM_(2.5)污染的时空分布特征,并利用过程分析工具IPR研究了会期两次短时间污染过程(4日13:00~5日12:00和10日13:00~11日12:00)中各种大气物理化学过程对城区官园和郊区定陵两个代表性站点近地面PM_(2.5)生成的贡献.结果表明,CMAQ模型合理地再现了北京市PM_(2.5)的浓度水平和时间变化.北京地区4日和10日发生不利于污染物扩散的气象条件,导致PM_(2.5)小时浓度出现高值(分别为188,124μg/m~3),但受减排措施和冷高压的作用,PM_(2.5)高值维持时间较短.4日13:00~5日12:00,水平传输是官园和定陵站点PM_(2.5)的主要贡献者,贡献率分别为49.6%和90.9%.此次污染过程北京地区受南部污染传输影响较强.10日13:00~11日12:00,官园站点PM_(2.5)主要来自源排放在本地的积累(78.8%),定陵站点PM_(2.5)主要来自较弱的水平传输(93.9%).此次过程体现出更加明显的局地性污染特征.两次过程中,PM_(2.5)的主要去除途径均为垂直传输.  相似文献   

15.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

16.
以长三角城市群为研究对象,利用卫星遥感观测数据协同分析长三角地区大气NO2和CO2浓度的时空变化特征和驱动因子,揭示了长三角地区污染物和CO2高浓度地区空间格局.结果表明长三角城市群地区大气NO2和CO2浓度的时空分布及变化特征呈现了受化石燃料燃烧和机动车排放等人为活动以及区域地形、地表覆盖、气候等自然条件的综合影响结果.大气NO2和CO2高浓度值围绕太湖明显呈口对西南向的U字形分布,一致于围绕太湖分布的杭州、上海、苏州、无锡、常州和南京等大型城市区域,以及安徽铜陵地区的工业排放区.大气NO2浓度值呈现秋冬时期较高,夏季最低的季节分布特征.大气CO2浓度受植被CO2吸收和CO2的积累影响,8~9月最低,4~5月最高.此外,随着人为排放活动的急剧减少,2020年1~3月的大气NO2浓度比2019年同时期降低了50%以上,其中分布了以钢铁厂、燃煤厂为主的大型工业热源的城市NO2浓度下降最多,如镇江、南京、马鞍山.  相似文献   

17.
基于OMI卫星遥感反演的NO2柱浓度数据,分析了近11a甘肃省对流层NO2柱浓度的时空变化及相关影响因素,同时利用HYSPLIT模型探究了大气污染物的来源.结果表明:从空间上,NO2柱浓度呈现出由甘肃东北区向西南区递减趋势,最高值主要分布于庆阳市全境和平凉市少部分地区.从2008~2014年NO2柱浓度值不断增长至最高值,高值区逐步扩大;2015~2018年NO2柱浓度值波动变化,呈现出向周围区域递减的趋势,高值区范围缩小;从时间上,2008~2018年对流层NO2柱浓度整体呈上升趋势,对流层NO2柱浓度四季均值分布为:夏季>春季>秋季>冬季;NO2柱浓度每年在6~8月达峰值,9月后开始下降,年内谷值出现在12月份~次年2月份;对研究区NO2柱浓度的贡献最大的是自然要素.高温、降水有利于土壤排放NO2,植被覆盖率对NO2起到一定的消减作用.利用HYSPLIT得出2009~2018年每年7月庆阳市NO2的外部输送路径,其中主要路径以陕西地区为主.  相似文献   

18.
2000~2014年北京市SO2时空分布及一次污染过程分析   总被引:2,自引:2,他引:2  
根据2000~2014年北京市SO2监测数据,系统分析了SO2时空分布特征并采用数值模式(CAMx)模拟分析了一次重污染过程中北京市SO2来源.结果表明,2014年与2000年相比北京市SO2年均浓度累计约降低69%,SO2年均浓度的变化率为-3.5μg·(m3·a)-1;北京市SO2的月均浓度呈U型分布,季节分布上整体呈现出冬季春季秋季夏季的特征,采暖季SO2浓度明显高于非采暖季;空间分布上北部及西部山区SO2浓度水平明显低于中心城区及西南、东南部地区,受减排措施影响较大的石景山、东四、通州监测点的SO2浓度降低明显;在2014年1月14~18日一次重污染过程中北京SO2存在明显的区域输送,PAST源示踪技术初步计算显示外来源对北京SO2浓度的贡献率为83%,其中北京周边高架点源电厂贡献占21%,北京4家主要燃煤电厂对全市SO2浓度贡献率约为3.5%.  相似文献   

19.
基于甘肃省2018~2019年颗粒物质量浓度监测数据,分析了全省大气颗粒物浓度的时空变化及排放特征,并利用HYSPLIT后向轨迹模式研究了颗粒物传输路径.结果表明:颗粒物(PM10和PM2.5)空间分布呈现区域特征:PM10浓度高值位于河西走廊地区,由北向南呈阶梯式递减;PM2.5以陇中地区为高值中心,向南北两侧递减,陇南地区为全省颗粒物清洁区.不同地区PM10与PM2.5地面浓度季节变化特征存在差异,陇中、陇东和陇南地区PM10和PM2.5浓度变化特征一致,陇中和陇东地区颗粒物(PM10与PM2.5)浓度冬高夏低,陇南地区则为冬高秋低;河西走廊PM10和PM2.5浓度季节变化不同,PM2.5冬高夏低,PM10春高夏低.后向轨迹聚类结果表明全省春季、冬季均受到来自中亚及新疆的偏西气流影响,该路径输送下可吸入颗粒物(PM10)浓度明显高于其他路径,是典型的沙尘输送路径,4大分区受沙尘传输影响程度依次为河西 > 陇中 > 陇东 > 陇南,来自陕西、川渝的偏东路径是陇南地区颗粒物的主要输送路径,该路径下PM2.5/PM10比值大于0.5,明显高于偏西路径,说明偏东路径人为源污染贡献显著.研究结果有助于全面认识全省颗粒物污染特点、为分区制定颗粒物污染防治政策、以及区域污染协同治理提供科学的参考依据.  相似文献   

20.
莫露  巫兆聪  张熠 《中国环境科学》2021,41(6):2562-2570
结合OCO-2卫星观测的CO2柱浓度混合比数据(XCO2),研究2014~2018年间中国CO2的时空分布及季节波动,并对影响XCO2分布的因素进行相关分析.结果表明,XCO2在研究时段内以2.56×10-6/a的速度增长;年均季节波动为3.26×10-6.在2014~2018年间观测到中国植被呈显著的上升趋势,尤其是在西北和东南沿海地区.植被活动是影响XCO2季节变化的重要因素,在东北地区观测到XCO2与归一化植被指数(NDVI)呈显著负相关(r=-0.58).人为排放是影响XCO2空间分布的重要因素,二者具有空间分布一致性(r=0.397,P<0.05),尤其是在人为排放较强(>103t)的区域,人为排放量与XCO2的相关性更强(r=0.714).最后分区域统计人口、电力消耗和路网密度等社会经济因素对XCO2的影响,相关性分析的结果分别为0.78,0.69和0.34,证明中国XCO2分布与社会经济因素的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号