首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
高效耐海水型厌氧氨氧化污泥的驯化   总被引:3,自引:0,他引:3  
针对部分含海水废水生物脱氮效能较低的问题,研究了梯度盐度海水对淡水厌氧氨氧化污泥的驯化过程.考察了不同海水盐度对厌氧氨氧化反应动力学、厌氧氨氧化菌细胞形态和反应器中菌群变化的影响.结果表明,梯度盐度废水可以成功驯化淡水厌氧氨氧化污泥,通过145d的驯化,其总氮去除速率为2.80kgN/(m3·d).在海水盐度由0提高至10‰、20‰和30‰的过程中厌氧氨氧化反应速率经历了升高、降低、再升高的过程,其中,海水盐度20‰在淡水厌氧氨氧化污泥的驯化过程中是一个临界点.驯化后,厌氧氨氧化菌细胞结构更加不规则,并在细胞壁上出现了类菌毛状结构,经16S rDNA PCR扩增测序鉴定该优势厌氧氨氧化菌为“Candidatus Kuenenia Stuttgartiensis”.驯化前后反应器中细菌菌群也发生改变.  相似文献   

2.
HCO3-浓度对厌氧氨氧化反应器脱氮效能的影响   总被引:3,自引:1,他引:2  
李祥  黄勇  袁怡 《环境科学学报》2012,32(2):292-298
采用序批式生物膜反应器,通过氮去除速率的测定,研究了HCO3-浓度对厌氧氨氧化反应器脱氮效能的影响.结果表明,当HCO3-与NH4+-N进水浓度比值为0.21时,反应器出水pH值大幅升高,抑制了厌氧氨氧化菌活性,使得氮去除速率大幅下降.当其比值为1.13时,反应器内pH能够降低到厌氧氨氧化菌生长所需要的环境,同时,反应器的氮去除速率开始逐步升高.当过量的HCO3-进入反应器后对厌氧氨氧化反应无影响,说明HCO3-对厌氧氨氧化反应器脱氮效能具有重要的影响,对维持反应器pH值与脱氮效能十分重要.在厌氧氨氧化反应器启动过程中HCO3-与NH4+-N进水浓度最佳比值为1.13.  相似文献   

3.
温度对海洋厌氧氨氧化菌脱氮效能的影响   总被引:1,自引:1,他引:0  
周同  于德爽  李津  吴国栋  王骁静 《环境科学》2017,38(5):2044-2051
采用ASBR反应器,研究了不同温度对海洋厌氧氨氧化菌处理含海水污水脱氮效能的影响,并利用修正的Logistic模型模拟不同温度下海洋厌氧氨氧化菌的动力学特性.结果表明,在25~35℃之间,温度对反应器的脱氮效能影响不大,总氮去除率(TNRE)基本保持在(82±2)%,总氮容积负荷去除速率(TNRR)稳定在(0.62±0.01)kg·(m~3·d)~(-1);在20℃时,TNRE从起始的59%经过13d上升到79%,说明在此温度下,海洋厌氧氨氧化菌仍然具有较强的脱氮能力,反应器在较低温处理含海水污水具有较好的发挥潜能;然而当温度降到15℃和10℃时,反应器的脱氮效能受到明显的抑制,TNRE分别下降至(40±8)%和(11±4)%,TNRR也下降至(0.30±0.04)kg·(m~3·d)~(-1)和(0.08±0.03)kg·(m~3·d)~(-1).根据Arrhenius方程得到,在25~35℃时,海洋厌氧氨氧化反应的活化能为26 k J·mol~(-1),在10~25℃时,海洋厌氧氨氧化反应的活化能为76 k J·mol~(-1).此外,通过Logistic模型对海洋厌氧氨氧化脱氮进行动力学分析,得到不同温度下NRE和出水总氮浓度(ceff)的预测公式,相关系数R2在0.966 8~0.995 7之间.  相似文献   

4.
盐度对厌氧氨氧化反应器运行性能的影响   总被引:10,自引:3,他引:7  
考察了厌氧氨氧化反应器处理高盐度、高浓度含氮废水的可行性.结果表明,高盐度显著抑制厌氧氨氧化活性,这种抑制具有可逆性.在30g·L-1(以NaCl计)盐度条件下,未驯化泻泥的厌氧氨氧化活性比对照(无盐水质条件)低67.5%;驯化污泥的厌氧氨氧化活性只比对照低45.1%.由高盐环境转移到低盐环境(无盐水)时,驯化污泥的厌氧氨氧化活性可提高43.1%.通过逐渐提高盐浓度,并调整反应器容积负荷避免基质抑制,可使厌氧氨氧化反应器适应30g·L-1(以NaCl计)盐度,其处理效能与对照期接近.但由于高盐度条件对厌氧氨氧化细菌生长的负面影响,反应器长期运行于高盐度条件下,容易出现功能衰退.  相似文献   

5.
吴国栋  于德爽  李津  周同  王骁静 《环境科学》2017,38(7):2917-2924
针对含盐废水生物脱氮效能较低的问题,采用厌氧序批式反应器研究了K~+浓度变化对厌氧氨氧化污泥脱氮效能的影响.结果表明,适量的K~+可有效的提升反应器脱氮效能,K~+对厌氧氨氧化污泥脱氮效能的影响主要分为4个阶段:适应阶段,K~+浓度为(0~2 mmol·L~(-1)),K~+的突然添加破坏了原有反应平衡,但最终厌氧氨氧化菌适应了K~+的存在,由于K~+还未对厌氧氨氧化菌产生明显效果,NH_4~+-N和NO_2~--N去除率略有上升;活性提升阶段(2~8 mmol·L~(-1)),K~+对厌氧氨氧化生物系统有促进作用,随着K~+浓度的提升,NH_4~+-N和NO_2~--N去除率显著提升;活性稳定阶段(8~20 mmol·L~(-1)),厌氧氨氧化菌脱氮效能处于稳定状态,NH_4~+-N和NO_2~--N去除率虽有下降,但还是高于未添加K~+时;抑制阶段(大于20 mmol·L~(-1)),此时厌氧氨氧化菌活性降低,K~+对厌氧氨氧化产生较大抑制,脱氮效能已低于0 mmol·L~(-1).在整个周期内K~+浓度8 mmol·L~(-1)时达到最佳去除效果,NH_4~+-N与NO_2~--N的平均去除率为89.24%和84.87%,NRR为1.113 kg·(m~3·d)~(-1).  相似文献   

6.
盐度对厌氧氨氧化(Anammox)生物脱氮效率的影响研究   总被引:4,自引:0,他引:4  
利用UASB反应器,采用厌氧氨氧化(Anammox)工艺处理模拟废水,经过106d无盐运行后,进行加盐试验(其盐度范围为0~33g.L-1,以NaCl计),探讨盐度对Anammox菌脱氮效率的影响.结果表明:适合Anammox菌驯化的最初盐度为2.5g.L-1;当盐度≤30g.L-1时,随着盐度的增加,Anammox菌...  相似文献   

7.
盐度条件下ANAMMOX-EGSB反应器颗粒污泥微生物群落   总被引:3,自引:2,他引:1  
王晗  李瀚翔  陈猷鹏  郭劲松  晏鹏  方芳 《环境科学》2019,40(4):1906-1913
采用高通量测序技术探究了0、15和30 g·L-1盐度条件下稳定运行ANAMMOX-EGSB反应器中颗粒污泥的微生物群落变化.结果发现,进水盐度提升至15 g·L-1及30 g·L-1后,反应器脱氮性能呈现小幅下降,随运行时间延长脱氮性能均可恢复.反应器性能稳定后,3种盐度条件下厌氧氨氧化菌的丰度依次为10.33%、20.90%和35.87%,其中Candidatus Kuenenia属为优势属.浮霉状菌门、变形菌门、绿弯菌门丰度占总体比例较高且累计丰度超过了80%,为反应器的优势菌门.盐度条件下,浮霉状菌门丰度增加,变形菌门丰度降低,绿弯菌门丰度相对稳定.电镜扫描显示盐度条件下颗粒污泥表面有大量丝状菌和胞外聚合物.盐度条件下反硝化菌丰度提高,增强了反硝化协同脱氮,绿弯菌门和拟杆菌门微生物丰度的提高有利于维持颗粒污泥结构稳定,好氧微生物及反硝化菌的存在也有利于维持反应器内部厌氧水平.这些结果表明,厌氧氨氧化菌经驯化可适应盐度,盐度条件下伴生菌对厌氧氨氧化菌功能的发挥提供了支撑.  相似文献   

8.
氧化石墨烯强化厌氧氨氧化菌的脱氮性能   总被引:1,自引:0,他引:1  
采用氧化石墨烯(GO)增强厌氧氨氧化菌的脱氮性能.通过批次试验观察GO对厌氧氨氧化菌的影响,结果表明:当GO浓度为0.15g/L时,厌氧氨氧化菌脱氮性能最好,总氮去除率比无GO的空白组提高18.6%;当GO剂量达到0.2g/L时,厌氧氨氧化菌活性受到抑制,总氮去除率比空白组降低了26.0%.通过对照实验研究GO对厌氧氨氧化菌脱氮性能的长期影响,结果表明:添加GO的R2反应器在每个基质浓度阶段的平均总氮去除率分别为85.3%,83.2%,81.1%,80.8%,均高于未添加GO的R1反应器.对R2反应器周期内脱氮性能进行动力学分析发现,修正的Boltzmann模型和修正的Gompertz模型比修正的Logistic模型更适合描述GO作用下周期内基质去除特性,并且通过模型得到了周期内任意t时刻下的出水总氮浓度和总氮去除率预测公式.  相似文献   

9.
不同TOC/NH4+-N对厌氧氨氧化脱氮效能的影响   总被引:1,自引:1,他引:0  
王凡  刘凯  林兴  周正  李祥  黄勇 《环境科学》2017,38(8):3415-3421
采用SBR厌氧氨氧化反应器,研究了不同TOC与NH_4~+-N比值对厌氧氨氧化反应器的脱氮效能的长短期影响.结果表明,在有机物短期影响时,反应器所能承受的最大TOC/NH_4~+-N为1.4,总氮去除速率可达0.26 kg·(m~3·d)~(-1).长期影响下,在TOC/NH_4~+-N小于0.4时,反应器可获得最高脱氮效能,总氮去除率为0.34 kg·(m~3·d)~(-1),TOC/NH_4~+-N大于0.4后,反应器脱氮效能持续降低,并且短期内厌氧氨氧化菌难以迅速恢复活性.利用q PCR(定量PCR)技术对长期影响前后反应器内菌种群落变化做定量分析,结果表明随着有机物的增加,反应器中的ANAMMOX菌数量从2.9×10~(11)copies·mL~(-1)减少至3.15×10~(10)copies·mL~(-1),在TOC/NH_4~+-N大于1.6的环境中,NH_4~+-N未能由厌氧氨氧化菌去除,厌氧氨氧化菌不能表现出生物活性.此时测得反硝化菌数量为3.0×10~9copies·mL~(-1),反应器中的NO_2~--N绝大部分由反硝化去除,虽然反硝化菌数量远少于ANAMMOX菌,但能表现出远超ANAMMOX菌的活性.  相似文献   

10.
有机碳源作用下厌氧氨氧化系统的脱氮效能   总被引:3,自引:2,他引:1  
采用ASBR厌氧氨氧化反应器,研究不同有机碳源及浓度变化对厌氧氨氧化菌活性与反应器脱氮性能的影响.实验结果表明,当葡萄糖浓度为200 mg·L~(-1)时,厌氧氨氧化活性下降84.2%;当乙酸钠浓度低于120 mg·L~(-1)时不但不会抑制厌氧氨氧化菌的活性,还在一定程度上促进了厌氧氨氧化反应的进行;蔗糖对厌氧氨氧化的促进作用与乙酸钠类似,当浓度为80mg·L~(-1)时,最大比厌氧氨氧化速率提高了25.0%;柠檬酸三钠对厌氧氨氧化反应几乎没有影响,当有机物浓度为80 mg·L~(-1)时,最大比厌氧氨氧化速率达到最大.有机碳源对厌氧氨氧化的促进作用由大到小为:蔗糖乙酸钠柠檬酸三钠葡萄糖.有机碳源作用下,厌氧氨氧化反应可协同反硝化反应去除系统中的硝态氮,提高了系统总氮的去除率.  相似文献   

11.
全海水盐度抑制下厌氧氨氧化工艺的恢复特性   总被引:1,自引:1,他引:0  
采用ASBR厌氧氨氧化反应器,研究了ANAMMOX反应器在全海水盐度(100%海水比例)下的抑制及恢复特性.结果表明受到盐度抑制后,ANAMMOX反应器的容积氮去除负荷(NRR)在经过了对盐度响应的敏感期、过渡稳定期和恢复期后可以再次进入稳定期,稳定期的NRR可达0.52 kg·(m~3·d)~(-1),与对照组[10%海水比例,NRR为0.462 kg·(m~3·d)~(-1)]接近.对修正的Logistic模型和修正的Gompertz模型做了改进,拓展了模型的适应性.推荐使用再次修正的Logistic模型,对受到全海水盐度抑制后的NRR恢复过程进行模拟.通过建立ANAMMOX反应器NRR恢复时间的预测公式,得到了全海水盐度下NRR的倍增周期为11.359 d.  相似文献   

12.
采用厌氧氨氧化-UASB工艺处理高浓度含氮废水,这是一种全新的生物脱氮工艺。厌氧氨氧化-UASB反应器、厌氧氨氧化-UASB-生物膜反应器在相同的进水条件和温控条件下稳定运行,实现了对氮素的持续去除能力,NH4^+-N、NO2^--N、TN去除率分别保持在99.9%、99.9%、90.0%以上,稳定运行阶段出水pH值均保持在8.5附近。NH4^+-N去除量与NO2^--N去除量、NO2^--N生成量的比值可以指示厌氧氨氧化反应器性能的演变。ANAMMOX菌在生长过程中需消耗碱度,因此反应器内pH值的变化可以反映生物反应的相对强度。生物膜的培养有利于ANAMIVIOX菌积累,UASB-生物膜反应器运行效果明显优于不具有生物膜的普通UASB反应器。  相似文献   

13.
磷酸盐对厌氧氨氧化活性污泥脱氮效能的影响   总被引:1,自引:0,他引:1  
周正  刘凯  王凡  林兴  李祥  黄勇  顾澄伟 《环境科学》2017,38(6):2453-2460
通过接种厌氧氨氧化污泥,研究了磷酸盐浓度变化对厌氧氨氧化活性污泥脱氮效能长短期的影响,对其抑制动力学参数进行拟合,并基于荧光定量PCR的测定,分析了受磷酸盐抑制前后反应器中厌氧氨氧化细菌丰度的变化.短期研究结果表明,磷酸盐浓度小于30 mg·L~(-1)对厌氧氨氧化污泥的脱氮效能没有明显的影响;随着进水磷酸盐浓度的升高,氮去除速率呈加速下降趋势;磷酸盐浓度大于200 mg·L~(-1)时,厌氧氨氧化污泥活性达到完全的抑制状态;采用Haldane抑制模型拟合磷酸盐抑制的动力学参数,所得半抑制常数为70.1 mg·L~(-1).长期研究结果表明,磷酸盐浓度小于50 mg·L~(-1)时,对厌氧氨氧化污泥脱氮效能的影响不大;磷酸盐浓度在70~90 mg·L~(-1)时,厌氧氨氧化污泥活性开始受到明显影响,经过一段时间可以有所恢复,但磷酸盐浓度越高,恢复所需时间越长;当磷酸盐浓度达到100 mg·L~(-1)时厌氧氨氧化污泥的脱氮效能受到严重抑制,氮去除速率由158.33 g·(m~3·d)~(-1)下降至60.17 g·(m~3·d)~(-1)左右,抑制约62%.荧光定量PCR结果表明,抑制后的污泥体系中ANAMMOX菌细胞浓度由(9.97±0.86)×107cells·m L~(-1)下降至(8.26±0.54)×107cells·m L~(-1),有相对减少的趋势.  相似文献   

14.
温度为30℃±1℃,厌氧氨氧化污泥为接种污泥,人工配制无机废水为进水,通过改变运行方式,研究内回流对厌氧氨氧化反应器不同运行阶段脱氮效能的影响.结果表明:厌氧氨氧化反应器经过42d启动成功,TN去除负荷为3.26kg/(m3·d),TN去除率达到76.04%;内回流对于厌氧氨氧化UASB反应器的培养初期与培养成熟后的阶段,表现出完全不同的特征:启动初期,增设内回流(回流比为92%)对反应器运行有负面影响,TN去除率由无回流时的30%下降到19%;颗粒污泥形成后,增设内回流(回流比为92%)对反应器脱氮性能有正面作用,TN去除率由无内回流时的76%提高到84%.  相似文献   

15.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

16.
部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液   总被引:16,自引:1,他引:15       下载免费PDF全文
在缺氧滤床+好氧悬浮填料生物膜工艺中实现部分亚硝化,然后进行厌氧氨氧化(ANAMMOX),考察其对高含氮、低C/N污泥脱水液的处理能力.结果表明,亚硝化反应器在15~29℃、DO 6~9mg/L条件下,通过综合调控进水氨氮负荷(ALR)、进水碱度/氨氮、水力停留时间(HRT)等运行参数,可以调节出水(NO2--N)/(NH4+-N)的比率,能够较好地实现部分亚硝化反应以完成厌氧氨氧化.当进水ALR为1.16kg/(m3·d),进水碱度/氨氮为5.1时,出水(NO2--N)/(NH4+-N)在1.2左右,(NO2--N)/(NOx--N)大于90%,进入ANAMMOX反应器的氮物质去除率达到83.8%.  相似文献   

17.
通过试验模拟不同幅度、不同频率的脉冲式进水流量波动,研究脉冲式流量波动对已稳定运行的厌氧氨氧化UASB反应器性能的冲击影响.结果表明,在脉冲波动幅度小于60mL/min(上升流速1.33cm/min)范围内,厌氧氨氧化UASB反应器表现出良好的适应性和承受力,甚至对于高频率的波动冲击,出水也可达到一级A标准,NH4+-N和NO2--N去除率都基本维持在80%以上,总氮去除率维持在70%以上.而当脉冲的波动幅度为100mL/min(上升流速2.22cm/min)时,则UASB反应器的出水水质波动性大,随着波动频率的增大,反应器的适应时间增长,一直到波动频率为1.5h时,反应器出水NH4+-N和NO2--N浓度难以稳定在5mg/L以下.随着波动幅度由40mL/min增大到60,100mL/min,反应器内污泥中厌氧氨氧化菌的丰度值和厌氧氨氧化菌占全细菌的百分含量均呈现先增多后减少的趋势,在波动幅度为60mL/min时均为最大,可能是由于此时污泥和基质的混合与接触更为高效,氮去除效率高,更有利于厌氧氨氧化菌的生长.  相似文献   

18.
厌氧氨氧化微生物颗粒化及其脱氮性能的研究   总被引:22,自引:4,他引:18  
利用厌氧颗粒污泥作为种泥,启动SBR反应器,旨在培养厌氧氨氧化颗粒污泥以及研究其脱氮性能.结果表明,水力停留时间(HRT)是富集厌氧氨氧化微生物的1个重要控制因素,以HRT为30 d,第58 d时,SBR反应器就出现厌氧氨氧化现象,与此同时,颗粒污泥由灰黑色变为棕褐色,粒径减小.到第90 d时,成功培养出厌氧氨氧化颗粒污泥,NH+4-N和NO-2-N同时被去除,最大去除速率分别达到14.6 g/(m3·d)和6.67 g/(m3·d).从第110 d开始,逐步降低HRT,以提高基质负荷促进厌氧氨氧化菌生长.到目前t=156 d,HRT降到5 d,氨氮和亚硝酸氮的去除率分别达到60.6%和62.5%,亚硝酸氮/氨氮的比率为1.12.污泥也由棕褐色变为红棕色,形成红棕色的具有高厌氧氨氧化活性颗粒污泥,总氮负荷达到34.3 g/(m3·d).  相似文献   

19.
研究了ANAMMOX耦合异养反硝化反应器的启动过程,考察了苯酚浓度对耦合反应器脱氮性能的影响.接种2L(占反应器有效容积的20%)挥发性悬浮固体(MLVSS)为6000mg/L的ANAMMOX颗粒污泥,在pH7.8、温度为25℃、HRT为1.5h的条件下经过86d的培养,ANAMMOX耦合异养反硝化启动成功.实验结果表明,在稳定运行阶段,NH4+-N、NO2--N和TN平均去除率分别为85.4%、86.1%和79.9%,TN平均容积负荷和TN平均去除负荷分别为2.63,2.10kg/(m3·d);ANAMMOX颗粒污泥外面包裹着苯酚反硝化菌;系统内异养反硝化与ANAMMOX存在协同和竞争关系.当苯酚浓度≥0.3mmol/L时,ANAMMOX菌的活性受到很大抑制,苯酚浓度的升高加剧了苯酚反硝化菌与ANAMMOX菌之间的竞争;从脱氮效果及系统稳定两方面综合考虑,当苯酚浓度为0.2mmol/L时,耦合效果最好,消耗的NH4+-N、NO2--N与生成的NO3--N之比为1:1.52:0.11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号