首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
基于ERA-Interim再分析资料、大气污染资料以及气象资料,利用T-mode主成分分析法(PCT)将成都地区2016~2018年PM2.5污染严重的1、2、11、12月份的海平面气压场和10m风场分成8种天气类型,分析不同天气类型下的空气污染状况及污染气象参数特征,进而从污染气象学的角度揭示重污染天气类型下的气象特征和潜在污染来源,结果表明:①成都地区在高压后部型、低前高后型、鞍型场、北方高压底部型中PM2.5污染会加重,属于污染型天气类型,而在西路冷锋前部型、高压边缘型、西北高压底部型、东路冷锋前部型中,PM2.5污染显著减弱,属于清洁型天气类型.②在污染型天气类型下,成都地区出现的逆温层较强,混合层高度较低均不利于PM2.5的扩散稀释,且边界层内南风分量明显增大,东北风减弱,边界层通风量(VI)较小,风场对污染物的扩散能力也较弱.③对污染天气类型下成都的PM2.5污染输送与潜在来源进行研究,认为成都南部及西南部地区在各个污染天气类型下都对其PM2.5的质量浓度有明显的影响,另外在鞍型场天气类型下,成都东部及东北部地区也是成都PM2.5污染的源区之一,而在北方高压底部型中,成都地区的PM2.5主要受到其周围地区的影响,外地的污染物输入较少.  相似文献   

2.
利用地基观测结果和多源卫星遥感观测,结合气象数据及HYSPLIT4后向轨迹模式,对华北平原中部背景地区(河南省郑州市中牟县东南郊)冬季霾事件的污染物特征和形成过程进行分析.综合观测时间为2014年12月13日~2015年1月16日,共有5次霾过程,占观测总天数的82%.地面监测结果显示,不同的污染过程污染物浓度变化曲线相似,O3浓度在清洁天浓度较高;NOx、SO2、PM10、PM2.5呈较强正相关性,NOx、SO2与 PM10相关系数0.64、0.57,与PM2.5相关系数0.56、0.45;近地面污染物以细粒子污染物为主,其中又以气态污染物二次生成的细粒子为主.AMPLE地基激光雷达和CALIPSO数据表明,华北平原霾层中上部受浮尘影响,以粗粒子污染物为主.气象探空数据表明该地区冬季大气对流层稳定利于霾的维持,假相当位温垂直差、K指数、露点差与能见度相关系数分别为0.52、0.56和 0.38.分析近地面风速风向对霾过程的影响表明,该地区冬季以南方向静小风为主,风速与能见度相关系数为0.32 ,PM1受东北方向污染源影响,PM1~2.5及PM2.5~10受西北方向污染源影响;结合高空风场分析,霾过程1受西北浮尘影响,霾过程5受南来水汽影响.通过后向轨迹分析,该地区冬季的低空污染传输主要来自东北和西北方向,其中东北方向区域传输来自河北与山东,占来源比例的14%,近距离污染传输主要来自站点以西的郑州、洛阳,约占来源比例的33%.  相似文献   

3.
天津地区霾天气特征研究   总被引:1,自引:0,他引:1  
基于2014~2017年天津地区PM2.5质量浓度,能见度和相对湿度监测数据开展霾天气特征研究.结果表明:天津中度以上霾过程分为五类:高压后部型,北部弱高压型,低压槽型,均压场型和锋前低压型.在现行标准下,中度霾一般对应重度污染天气,重度霾对应重度到严重污染天气;五级重度污染天气一般有中-重度霾发生,六级严重污染天气有重度霾天气发生.2013年“大气污染防治行动计划”开展以后,天津PM2.5质量浓度和霾日均显著减少,2017年相比2013年霾日减少了55%,中度及其以上霾日由2013年的41d下降到2017年的20d,下降幅度超过50%.基于实况监测的PM2.5质量浓度,能见度和相对湿度,可以较好的构建区域能见度计算方程.统计数据显示,其估算的能见度和实况值相关系数为0.94,相对误差为18.6%,非霾日辨识准确率为85%,霾日辨识准确率为95.6%,轻微霾辨识准确率为83%,轻度霾辨识准确率为78%,中度霾辨识准确率为93%,重度及以上霾辨识准确率为94%,对于判断霾等级,有较强的适用性.将该方程与空气质量模式结合开展霾等级预报,2015~2017年24h预报产品检验显示:能见度预报值与实况值相关系数为0.75,预报均值13.9km,实况均值14.1km,相对误差为29.6%,FAC2(预报值在实况值两倍范围内百分比)为98.1%,霾日预报准确率81.4%,霾日漏报率18.6%,霾日空报率20.6%,如果容错1级,轻微霾日预报准确率为96%,轻度霾日预报准确率为85%,中度及以上霾日预报准确率为69%,可有效支撑天津霾等级预报的开展.  相似文献   

4.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

5.
利用常规地面气象资料、NCEP/NCAR再分析资料以及全国PM2.5浓度数据,并结合后向轨迹、空气污染输送指数和传输通量分析,针对2019年12月10~11日一次冷锋输送造成我国中东部地区出现的大范围霾天气过程进行了分析.结果表明:(1)霾期间高空500hPa以经向环流为主,伴随着高空低压槽引导地面冷锋向东南方向移动,污染物浓度大值区也依次由华北地区移至黄淮、江淮地区.(2)冷锋过境前,华北至长江三角洲区域PM2.5浓度均有明显增涨;北京以偏南方向的污染物输入为主,济南以西北和偏东方向输入为主,南京则主要是偏北和偏西方向的输入.(3)冷锋过境时,冷空气迅速将北京站的污染物清除;而济南站则受高压底部偏东风回流的影响,PM2.5浓度维持在50μg/m3左右;冷锋推进至南京站时西北风已较小,对污染物的清除作用不明显.以江苏省为例,整个过程中,江苏本地污染物贡献占25.8%,江苏以外的污染物贡献占74.2%,以输送为主.(4)冷锋过境后,3站的边界层结构也略有不同,北京站的逆温层迅速被打破;济南站由于受海上暖湿平流影响,近地面由等温层变成逆温层;而南京站的近地面则由逆温层变为等温层.本研究揭示了在冷锋南下过程中,上游污染物对下游地区的影响,以及南北方站点表现出不同的污染物变化和清除特征.  相似文献   

6.
为了解鞍型场对西安市PM2.5重污染过程的影响.以西安市2016年2月6—14日重污染过程ρ(PM2.5)及气象要素的小时变化为研究对象,综合分析了此次重污染过程特征、天气型以及气象要素变化.结果表明:①西安市此次重污染过程可分为污染上升阶段(6—7日)、污染维持阶段(8—11日)及污染减轻阶段(12—14日),3个阶段分别处于均压场、鞍型场、高压前部等天气型的影响下.②此次鞍型场发生时,天气持续静稳,气压梯度力小,且西安市处于气流的辐合地带,导致污染物的形成和积累,ρ(PM2.5)最高值达198 μg/m3.③在鞍型场的控制下,西安市日均气温维持在偏高的水平(最高达7.2℃),相对湿度呈上升的趋势,最高达86.5%;而风速和能见度则波动下降,平均风速和能见度最低值分别为0.8 m/s和0.5 km.高温、高湿、小风的气象条件有利于污染物的吸湿增长从而导致PM2.5重污染.④受鞍型场的影响,西安市边界层高度较低,最低时只有55 m,且逆温层较厚,强度较大,最大值达3.8℃/(100 m),极低的边界层高度和较厚的逆温层削弱了污染物的垂直扩散能力,污染物被抑制在近地面,形成较严重的污染.研究显示,鞍型场天气型导致的均压场、暖湿、静风、低边界层及强逆温层是此次西安市PM2.5重污染过程的重要原因.   相似文献   

7.
为定量化评估不同地区对肇庆市污染物输送影响,分析了2014—2018年肇庆市ρ(PM2.5)和ρ(O3-8 h)(O3-8 h为O3日最大8 h滑动平均值)的变化特征,并基于HYSPLIT模式计算不同季节后向气流轨迹,通过聚类分析、潜在源贡献因子和浓度权重轨迹方法对肇庆市外来污染物的输送路径和潜在源区进行分析.结果表明:①2014—2018年肇庆市ρ(PM2.5)年均下降3.3 μg/m3,2016年开始ρ(PM2.5)最大值逐年增大.ρ(PM2.5)日变化呈双峰型,峰值分别出现在上、下班高峰期后.2016年起ρ(O3-8 h)年均增加4.4 μg/m3,成为肇庆市首要空气污染物.ρ(O3)日变化呈单峰型,于15:00—16:00达到峰值.②PM2.5和O3污染分别在冬季和秋季较严重,超标日分别达20.6和15.0 d.ρ(PM2.5)与风速相关性最高,ρ(O3-8 h)与日照时数和相对湿度相关系数均较高.③春、夏两季影响肇庆市的气流近80%来自南部海面和东北方向,秋、冬两季85%以上气流源自偏东和偏北方向,肇庆市PM2.5和O3污染除受本地排放影响外,还有来自珠三角、广东省北部及其东部沿海、江西省等地区的输送贡献.研究表明,肇庆市PM2.5和O3污染均较严重,区域联防联控需重点关注广东省中东部城市的外来输送影响.   相似文献   

8.
利用广州市2015—2021年的地面观测资料和ERA5再分析数据集,统计了臭氧和PM2.5的时间分布特征及两者同时出现高值(“双高”过程)的气象成因,并进一步用自组织神经网络(SOM)研究了高浓度臭氧和PM2.5(浓度大于年第85分位数)对应的客观天气型.结果表明,2015—2021年,广州市臭氧浓度呈逐年上升趋势,而PM2.5浓度则呈逐年下降趋势,臭氧逐渐取代PM2.5成为首要污染物.“双高”日主要集中在春季和秋季,且秋季占比超过50%.当温度为20~30℃,湿度为30%~50%时,“双高”日出现的概率达到30%以上.基于天气分型方法,本研究发现在所有“双高”污染过程中,主要天气分型依次为:高压底后部型、变性高压脊型、副高+台风外围型、冷锋前部型;秋季发生“双高”污染时,天气分型依次为:副高+台风外围型和副高+弱冷高压脊型.  相似文献   

9.
采用COST733软件将北京地区2007~2016年的大气环流总体分为T1~T9种类型,研究其与霾日的关联性,并结合PM2.5和臭氧地面观测,分析不同天气型对应的污染特征及气象参数分布规律.2007~2016年霾日发生概率21.5%,T4和T9型下霾日最多,T5和T8型最不利于霾日发生.9类天气型下霾日变化具有阶段性,2007~2012年(阶段一)霾日少且年际差异小,2013~2016年(阶段二)霾日增多.对9类天气型下霾日PM2.5及臭氧变化进行分析,T1、T3、T4和T9型霾日多出现在秋冬季,PM2.5日变化为逐时增加态势,4类天气型在第一阶段的白天有浓度波动增长形成的小峰值,但第二阶段减弱消失.大部分天气型的霾日,阶段二的PM2.5浓度较阶段一降低,T7和T9型表现为增加,增幅分别为23.7%和3.9%.所有天气型霾日的臭氧日变化均为单峰型,峰值出现在下午,臭氧日均浓度最高为T8型.此外,阶段二与阶段一相比,T3、T5和T6型臭氧平均浓度增加,其中T5型增幅达到49.8%.将霾日与近地面气象要素关联分析,平均气温、风向、风速可以较好的解释臭氧浓度变化,而PM2.5的变化特征不仅与气象要素相关,在一定程度上也体现了污染排放及区域联动减排的贡献,需两者结合才能更好探究PM2.5浓度整体特征及细节变化.  相似文献   

10.
牟南南  朱彬  卢文 《环境科学》2022,43(1):85-92
利用观测资料和中尺度天气-化学模式(WRF-Chem)对一次冷锋南下天气过程导致的我国东部大范围空气污染开展研究,强调了冷锋过境前后的边界层结构及其对PM2.5三维结构和变化的影响.观测发现,地面重污染区域位于冷锋前部均压场或等压线稀疏区域,在冷锋由北向南快速移动过程中,途经各站点PM2.5浓度峰值伴随锋前而至.WRF-Chem模式可以较好地模拟中国东部地面和高空气象要素以及PM2.5浓度的时空变化.模拟结果表明,处于该移动冷锋天气系统相同位置的沿途各站点的边界层结构以及PM2.5垂直廓线表现出相似的特征.即:当冷锋开始入侵时,锋前污染物从地面被抬升到高空,PM2.5浓度的增加和高空风速的增大导致高空PM2.5通量增大,且PM2.5浓度高值区随着高度升高向暖气团一侧倾斜.夜间冷锋过境引发边界层内对流性不稳定增加,边界层高度可达1 km以上,打破了边界层昼夜演变特征.本研究表明,垂直观测和精细模拟的结合可以有效地解释天气过程对空气污染的...  相似文献   

11.
2016冬季京津冀一次持续重度霾天气过程分析   总被引:1,自引:1,他引:0  
毛曳  张恒德  朱彬 《环境科学》2021,42(8):3615-3621
2016年12月16~21日我国京津冀地区发生了一次持续重度霾天气过程.为了进一步加深对霾的认识和提高对霾的分析预报能力,利用多种资料,对此次重度霾天气过程的环流背景和气象要素等进行了综合性分析.结果表明,此次过程持续时间长,污染强度大,影响范围广,能见度低,以外来输送为主,气溶胶主要分布在600 m以下高度,有一定的极端异常性,静稳天气指数与空气质量指数有较好的对应关系;京津冀地区高空受高压脊前的纬向环流控制,维持偏西气流,冷空气活动弱,以下沉气流为主,水汽含量较低,高空云量较少,低空有暖脊北伸,地面位于高压东南部,受均压场控制,气压梯度较小,受偏南风影响,污染物易于堆积;地面静小风,相对湿度较高,混合层高度较低,不利于污染物的水平和垂直扩散.  相似文献   

12.
南京市霾天气与主要气象条件的相关分析   总被引:4,自引:0,他引:4  
利用天气学原理,分析研究2012~2014年南京市霾天气的主要地面天气形势、气象要素以及PM2.5与PM10浓度的相互关系.结果表明,2012~2014年南京市霾天气以轻度和轻微霾为主,且冬季最多,夏季最少;相对湿度在50%~80%之间有利于霾的发生,尤其是70%≤RH<80%时;有87.6%的霾发生在风速≤4m/s的情况下,并且主要来自东北偏东到东南风向区域.最利于南京霾天气形成的主要天气形势是均压场、高压控制和高压后部,而低压槽、副高控制和台风影响时霾发生较少.PM2.5在PM10中所占比例与霾强度呈正比.通过对南京市气象条件与霾的关系,及后向轨迹HYSPLIT4模式的聚类分析显示,结合南京市霾天气时的风向统计,影响南京霾发生的污染源主要有本地源、南京市东南地区的近距离污染源和华北地区的远距离污染源.  相似文献   

13.
中山市旱季霾特征及数值模拟分析   总被引:1,自引:1,他引:0  
利用观测数据、Hysplit后向轨迹模式以及WRF-CMAQ模式对中山市旱季霾特征进行模拟分析.中山市霾污染的天气形势以大陆高压型为主.当相对湿度在71%~90%时,气溶胶浓度和能见度的负相关性最显著,且当能见度减小到5 km以下时,PM_(2.5)浓度的大幅减小才能使能见度略有好转.最有可能引起中山发生霾天气的两条污染带,一条是沿中山至湖南南部,另一条是沿中山到粤东地区.WRF-CMAQ模式能较好地模拟出2014年1月份中山PM_(2.5)浓度、能见度的变化趋势以及广东省区域内灰霾的污染过程.在气溶胶质量权重及消光贡献中,硫酸盐的比重最高,在高相对湿度下,二次气溶胶的消光权重超过80%.通过中山PM_(2.5)过程分析发现,在霾过程,无冷空气时PM_(2.5)主要来自气溶胶反应、排放源和水平平流,贡献率分别为35%、15%和10%,有冷空气时水平平流的贡献最大,达37%;在清洁过程,无冷空气时气溶胶主要靠水平平流和干沉降清除,贡献率分别为-39%和-14%,有冷空气时清除以水平平流和垂直对流、扩散为主,贡献率分别为-29%和-25%,说明不同天气条件下霾的污染和清洁机制有着明显差别.  相似文献   

14.
长江三角洲地区冬季能见度特征及影响因子分析   总被引:4,自引:0,他引:4  
利用Micaps提供的2013和2014年冬季长江三角洲地区(以下简称长三角)28个站点的地面常规观测资料、NCEP FNL再分析资料和国家环境保护部发布的PM2.5质量浓度自动检测数据,分析了长三角冬季大气能见度特征,以及空气污染物和气象条件对能见度的影响.2013年冬季长三角霾天发生频率为53.4%.多元非线性回归分析表明,PM2.5质量浓度、地表10m风速、500~850hPa水平风垂直切变、相对湿度、925~1000hPa垂直温差、850~925hPa假相当位温差这6个因子能够解释能见度变化的81.6%.气象条件对能见度的作用与污染物浓度相当,热力因子的贡献大约是动力因子的2倍.PM2.5质量浓度越低,空气质量越好,以及相对湿度大于70%时,相对湿度通过气溶胶吸湿增长对能见度的作用越强.考虑PM2.5质量浓度的影响时,相对湿度对能见度的贡献提高了1倍.利用2014年冬季资料验证多元拟合方程,效果较好.  相似文献   

15.
采用数值模拟与观测资料相结合的方式,对沈阳市2018年1—3月发生的1次重污染过程的气象条件、天气形势和潜在来源进行初步分析。结果表明:重污染过程与当地的气象条件密切相关,沈阳市重污染期间的PM2.5和PM10浓度与风速和气温呈负相关,与气压和相对湿度呈正相关。中度、重度及以上污染主要集中于相对湿度为50%~70%条件下;重污染主要在高压、高湿、低风速、近地层逆温的天气形势下,污染物不易扩散。高空若有暖平流、受槽前脊后暖平流的影响也会导致区域空气质量下降。潜在来源分析表明,沈阳市的气团共有4条运输路线,其中来自内蒙古的轨迹携带了大量的PM10;属于簇团2(34.72%)的内蒙古自治区中东部,属于簇团3(21.94%)的河北省以及属于簇团4(13.06%)的吉林省西部地区对沈阳市的污染贡献比较高。  相似文献   

16.
北京夏季典型环境污染过程个例分析   总被引:12,自引:0,他引:12  
对北京ρ(PM10)日均值和华北地区气象资料的综合分析发现,北京夏季ρ(PM10)的变化过程与环境背景场组合系统明显相关,其典型的背景场演变过程为:①在ρ(PM10)上升阶段,副热带高压西伸较强,持续数天控制华北地区,具有均压和弱气压场的特征.在其控制下,受地形和周边边界层背景的影响,偏南气流将北京南部的污染物向北京输送和汇聚,ρ(PM10)呈逐日汇聚增长趋势.②冷锋逼近时的均压场和弱气压场是ρ(PM10)峰值出现的背景.③在冷锋后部的大陆高压前锋造成较强的区域性输送过程,而冷锋附近形成的湿沉降使ρ(PM10)下降,因此在强区域性输送过程与明显降水终止后常出现ρ(PM10)谷值.统计分析表明,北京夏季环境污染过程与大尺度环境背景场组合系统及其配置的污染物输送通道演变有明显的同步特征.该类组合系统所配置的背景场及其同步环境污染演变过程的特征具有普遍规律性,可为奥运期间环境污染过程的预测和控制提供参考.   相似文献   

17.
北京2011年10月连续灰霾过程的特征与成因初探   总被引:17,自引:5,他引:12       下载免费PDF全文
选择2011年北京地区灰霾典型发生月——10月,利用在中国环境科学研究院监测的φ(SO2)、φ(O3)、φ(NO2)、φ(CO)、ρ(PM10)、ρ(PM2.5)、ρ(BC)等数据,对该地区秋季典型灰霾过程特征及成因进行了研究. 在观测期间51.5%的时间内出现了灰霾,其中13.6%属于重度灰霾. 对灰霾期间污染物时间分布特征的分析表明:在灰霾过程中ρ(PM1)、ρ(PM2.5)、ρ(PM10)及ρ(BC)较各自月均值的升幅均大于20%,ρ(PM1)/ρ(PM2.5)(78.7%)也明显增大.大气能见度的降低与细颗粒物及亚微米颗粒物有直接关系. 对观测期间的气象因素、气体污染物时间序列和颗粒物浓度累积特征的研究表明,10月连续灰霾过程的成因可能是该月频繁出现的鞍型场静稳天气及北京周边地区存在的基数较大的细颗粒物排放源所致.   相似文献   

18.
基于HYSPLIT后向轨迹模式和NCEP的GDAS数据(2019年3月~2020年2月),对抵达帕米尔高原东部的48h后向气团轨迹按季节聚类,其PM10和PM2.5年均值分别为(29.4±16.4),(9.3±5.1)μg/m3,大气颗粒物以PM10为主,结合同期PM10浓度数据,分析不同路径对帕米尔高原东部PM10聚集的贡献,并利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),揭示研究期间帕米尔高原东部不同季节PM10的潜在源分布及其贡献水平.结果表明:帕米尔高原东部PM10输送路径的季节特征明显,春季来自中亚的西风气流对应PM10高值,夏季来自中国新疆西部的气流也对应较高PM10值,秋季各轨迹对应PM10值相当,冬季来自南亚方向气流对应PM10高值.PM10春季贡献源区主要位于中国新疆西部、阿富汗东北部、巴基斯坦东北部、塔吉克斯坦中部及东部地区,夏季主要位于中国新疆西部喀什与和田北部地区,秋季主要位于土库曼斯坦东部、乌兹别克斯坦东南部、巴基斯坦北部、阿富汗北部与塔吉克斯坦南部接壤地区,冬季主要位于巴基斯坦东北部、印度北部以及阿富汗北部.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号