首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of organic acids on surface water acidity as well as their buffering during anthropogenic acidification and subsequent recovery was studied in a field experiment on a total organic carbon (TOC)-rich stream draining the Svartberget catchment in northern Sweden. H(2)SO(4) was added to the stream to increase SO(4)(2-) concentration by 90 microeq l(-1) for 30 h. About 60% of the added H(+) was buffered by protonation of organic acids, another 20% was buffered by base cations released from the surface of the stream channel and only ca. 20% of the added acid remained unbuffered. TOC concentrations (27 mg l(-1)), and site density of carboxylic groups--8.6 microeq (mg TOC)(-1)--remained stable during the experiment. Two models of organic acid dissociation (a triprotic model and a monoprotic pH-dependent pKa model) were fitted to the experimental results. These models explained the observed variations in organic anions, but the model parameters were quite different from those reported by studies in Northern America and Central Europe. This experiment had substantially more buffering effect of TOC between pH 4.4 and 5.3, which is an environmentally important pH range.  相似文献   

2.
Three simple steady-state water-chemistry models are used to calculate critical loads of sulfur for lakes in Finland. Because of the high concentrations of organic matter in Finnish lakes, the influence of organic anions on the calculation of critical loads has been given special attention. The first two methods are well known ion-balance methods which have been used in many previous lake-acidification studies. The third method, developed for this study, includes the numerical solution of equilibrium equations for organic anions, inorganic carbon species and inorganic monomeric aluminum. The original pH and aluminum concentration of the lakes are estimated with this model, and a method to estimate the original acid neutralizing capacity (ANC) by simulating a Gran-titration is also tested on the lake data. Uncertainty in the predictions is estimated by varying the most critical model parameters.  相似文献   

3.
Fourteen unpolluted Finnish headwater lakes with pH values varying from 4.8 to 7.0 were studied for trace-metal concentrations in water, sediment, aquatic plants (Nuphar luteum L., Sparganium sp.), aquatic insect larvae (Limnophilus sp., Phryganea sp.) and fish (Esox lucius L., Perca fluviatilis L., Coregonus sp., Salvelinus fontinalis L., Salmo trutta L.). Trace-metal deposition was estimated by analysing the snowpack. Non-parametric correlation analysis was carried out between trace metal concentrations in biota and pH, ANC, TOC, CA + Mg concentration in water and a given metal concentration in water and sediment. Bioaccumulation of several trace metals increased with increasing acidity and decreasing ANC in water. This was especially true for Pb and Cd. Aquatic plants were, in general, the best indicator group concerning differences in trace-metal bioaccumulation in lakes with different acidity. There was some evidence that a higher concentration of TOC in water may reduce bioaccumulation of Pb, Cd and Zn in aquatic plants and fish. The copper concentration in sediment was the only background variable explaining Cu concentration in aquatic insects. Multivariate analysis of the whole background data gave comparable preliminary results. Over 80% of the trace metal concentrations in biota of different lakes was explained by the background variables. In general, elevated concentrations of most of these trace metals can be expected to occur in the biota of acidified low calcareous lakes.  相似文献   

4.
Abundance (catch per unit effort, n=3752) and population structure of perch Perca fluviatilis were studied in 30 acidic Norwegian lakes with relation to pH (4.3-5.9), calcium (0.41-2.44 mg litre(-1)), labile aluminium (24-255 microg litre(-1)) and total organic carbon (TOC, 1.7-13.8 mg C litre(-1)). Standard series of bottom gill-nets were used to sample fish populations. A multiple regression analysis showed that abundance was significantly correlated to TOC (P<0.05) and, to a smaller extent, to the Ca in lakes with concentrations between 0.41 and 1.70 mg litre(-1) (P=0.07). The lakes which were inhabited by pike were excluded from the analysis. Recruitment failure seems to be the main cause of reductions in perch numbers in the lakes studied. However, high mortality among adult individuals was also evident, and an episode of fish kill was observed in one of the lakes.  相似文献   

5.
Five factors contribute to episodic depressions in pH and ANC during hydrologic events in low-order streams in Maine: (1) increases of up to 50 microeq litre(-1) NO3; (2) increases of up to 75 microeq litre(-1) organic acidity; (3) increases of as much as 0.3 in the anion fraction of SO4; (4) as much as 100 microeq litre(-1) acidity generated by the salt-effect in soils; and (5) typically < or = 40% dilution by increased discharge. In conjunction with increased discharge, factors 1, 2 or 4 appear necessary to depress pH to less than 5.0. The chemistry of individual precipitation events is irrelevant to the generation of acidic episodes, except those caused by high loading of neutral salts in coastal regions. Increases in discharge, but not necessarily in dilution of solutes, in combination with the chronically high SO4 from atmospheric deposition, provide the antecedent chemical conditions for episodic acidification. Differences in antecedent moisture conditions determine the processes that control output of either ANC or acidifying agents to aquatic systems.  相似文献   

6.
Organic pollutants (e.g. polyaromatic hydrocarbons (PAH)) strongly sorb to carbonaceous sorbents such as black carbon and activated carbon (BC and AC, respectively). For a creosote-contaminated soil (Sigma15PAH 5500 mg kg(dry weight(dw))(-1)) and an urban soil with moderate PAH content (Sigma15PAH 38 mg kg(dw)(-1)), total organic carbon-water distribution coefficients (K(TOC)) were up to a factor of 100 above values for amorphous (humic) organic carbon obtained by a frequently used Linear-Free-Energy Relationship. This increase could be explained by inclusion of BC (urban soil) or oil (creosote-contaminated soil) into the sorption model. AC is a manufactured sorbent for organic pollutants with similar strong sorption properties as the combustion by-product BC. AC has the potential to be used for in situ remediation of contaminated soils and sediments. The addition of small amounts of powdered AC (2%) to the moderately contaminated urban soil reduced the freely dissolved aqueous concentration of native PAH in soil/water suspensions up to 99%. For granulated AC amended to the urban soil, the reduction in freely dissolved concentrations was not as strong (median 64%), especially for the heavier PAH. This is probably due to blockage of the pore system of granulated AC resulting in AC deactivation by soil components. For powdered and granulated AC amended to the heavily contaminated creosote soil, median reductions were 63% and 4%, respectively, probably due to saturation of AC sorption sites by the high PAH concentrations and/or blockage of sorption sites and pores by oil.  相似文献   

7.
Modeling recovery of Swedish ecosystems from acidification   总被引:2,自引:0,他引:2  
Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites. While the long-term goal is to protect 95% of the area, implementation of the Gothenburg protocol will protect approximately 75% of forest soils in the long term. After 2030, recovery will be very slow and involve only a limited geographical area. If there had been no emission reductions after 1980, 87% of the forest area would have unwanted soil status in the long term. In 1990, approximately 17% of all Swedish lakes unaffected by agriculture received an acidifying deposition above critical load. This fraction will decrease to 10% in 2010 after implementation of the Gothenburg protocol. The acidified lakes of Sweden will recover faster than the soils. According to the MAGIC model the median pre-industrial ANC of 107 microeq L(-1) in acid sensitive lakes decreased to about 60 microeq L(-1) at the peak of the acidification (1975-1990) and increases to 80 microeq L(-1) by 2010. Further increases were small, only 2 microeq L(-1) between 2010 and 2040. Protecting 95% of the lakes will require further emission reductions below the Gothenburg protocol levels. More than 7000 lakes are limed regularly in Sweden and it is unlikely that this practice can be discontinued in the near future without adverse effects on lake chemistry and biology.  相似文献   

8.

Nickel (Ni) in small plateau lake sediments plays an important role in influencing the quality of lake ecosystems with a high degree of endemism and toxicity. This paper focuses on the spatial distribution and ecological risks of nickel in the sediments of Jianhu Lake, a small plateau lake in China, and the influence of pH and total organic carbon (TOC) on nickel concentrations. The results showed that average total nickel concentrations were 138.99 ± 57.57 mg/kg (n = 38) and 184.31 ± 92.12 mg/kg (n = 60) in surface sediments (0–10 cm top layer) and sediment cores (0–75 cm depth), respectively, and that the residual fraction was the main form of nickel. Simultaneously, through a semivariogram model, strong spatial dependence among pH, TOC, and the oxidizable fraction was revealed, whereas total nickel, exchangeable and the weak acid soluble fraction, reducible fraction, and residual fraction showed moderate spatial dependence. The vertical distribution revealed that nickel accumulated mainly in the bottom 5 cm (70-75 cm) of the sediment layer and that the pH was higher there, whereas TOC was concentrated mainly in the top 5 cm of sediment. Using geoaccumulation and a potential ecological risk index, moderate nickel pollution and moderate risk levels were found in most surface sediments, but moderate nickel pollution and high risk levels were observed in most sediment cores. In addition, pH and TOC were found to have a strong effect on the distribution and concentration of nickel and its fractions in the small plateau lake. In summary, nickel posed a certain degree of pollution and ecological risk, which deserves attention in the sediments of small plateau lakes.

  相似文献   

9.
Long-term (1987–2012) water quality monitoring in 36 acid-sensitive Swedish lakes shows slow recovery from historic acidification. Overall, strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many acid-sensitive lakes. Base cation concentrations have declined less rapidly than strong acid anion concentrations, leading to an increase in charge balance acid neutralizing capacity. In many lakes, modeled organic acidity is now approximately equal to inorganic acidity. The observed trends in water chemistry suggest lakes may not return to reference conditions. Despite declines in acid deposition, many of these lakes are still acidified. Base cation concentrations continue to decline and alkalinity shows only small increases. A changing climate may further delay recovery by increasing dissolved organic carbon concentrations and sea-salt episodes. More intensive forest harvesting may also hamper recovery by reducing the supply of soil base cations.  相似文献   

10.
Kinetics and mechanism of TNT degradation in TiO2 photocatalysis   总被引:9,自引:0,他引:9  
Son HS  Lee SJ  Cho IH  Zoh KD 《Chemosphere》2004,57(4):309-317
The photocatalytic degradation of TNT in a circular photocatalytic reactor, using a UV lamp as a light source and TiO(2) as a photocatalyst, was investigated. The effects of various parameters such as the initial TNT concentration, and the initial pH on the TNT degradation rate of TiO(2) photocatalysis were examined. In the presence of both UV light illumination and TiO(2) catalyst, TNT was more effectively degraded than with either UV or TiO(2) alone. The reaction rate was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. In the mineralization study, TNT (30 mg/l) photocatalytic degradation resulted in an approximately 80% TOC decrease after 150 min, and 10% of acetate and 57% of formate were produced as the organic intermediates, and were further degraded. NO(-)(3) NO(-)(2), and NH(+)(4) were detected as the nitrogen byproducts from photocatalysis and photolysis, and more than 50% of the total nitrogen was converted mainly to NO(-)(3)in the photocatalysis. However, NO(-)(3) did not adsorbed on the TiO(2) surface. TNT showed higher photocatalytic degradation efficiency at neutral and basic pH.  相似文献   

11.
The kinetics and mechanism of the Riboflavin (Rf)-promoted photochemical degradation with visible light of the herbicide Norflurazon (NF) has been studied by time-resolved and stationary techniques. Using light of wavelength higher than 400 nm--a region where NF is totally transparent--and with concentrations of Rf and NF of ca. 0.02 and 1 mM, respectively, only the excited triplet state of Rf ((3)Rf*) is quenched by NF, in competition with dissolved ground state triplet oxygen, O(2)((3)Sigma(g)(-)). NF degradation mainly occurs by reaction with superoxide radical anion O(2)(-) formed through two electron transfer steps: from NF to (3)Rf*, yielding Rf radical anion, and from this anion to O(2)((3)Sigma(g)(-)), regenerating ground state Rf. Although singlet molecular oxygen is also produced, NF only quenches this oxidative species in a physical mode. The global result is the photoprotection of the sensitiser and the photodegradation of NF.  相似文献   

12.
The purpose of this study was to compare the molecular size distribution (MSD) of natural organic matter (NOM) in raw waters (RW) and drinking waters (DW), and to find out the differences between MSD after different water treatment processes. The MSD of NOM of 34 RW and DW of Finnish waterworks were determined with high-performance size-exclusion chromatography (HPSEC). Six distinct fractions were generally separated from water samples with the TSK G3000SW column, using sodium acetate at pH 7 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface waters (lakes and rivers), while in artificially recharged groundwaters and natural groundwaters intermediate and small fractions predominated. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. Granular activated carbon (GAC) filtration, ozonation, and their combination reduced all humic fractions compared to the conventional treatment. Humic fractions correlated with total organic carbon (TOC) content and chemical oxygen demand, this being especially true in RW. The results demonstrate that the HPSEC method can be applied for a qualitative and also for rough estimate quantitative analyzes of NOM directly from RW and DW samples without sample pretreatment.  相似文献   

13.
Fifty-six headwater Canadian Shield lakes were repetitively sampled from 1979 to 88 to determine their response to changes in acidic deposition of the period. Annual wet sulphate loadings varied between 38 and 83 meq m(-2), with highest deposition in the late 1970s followed by somewhat lower but variable deposition in the 1980s. Median pH of the lakes increased 0.42 pH units from 1979 to 1985 and decreased by 0.15 units between 1985 and 1988. Short water renewal times (x=1.1 y) promoted rapid equilibration. Since lake were so responsive to changes in SO4(2-) inputs, they were at or near steady state at all times. Comparison of predicted original pH and ANC with 1979 data indicate a median decline of 0.45 pH units and a loss of 34 microeq litre(-1). ANC. Four of 9 lakes were found to be historically fishless, based on the continued presence of Chaoborus americanus in sediment cores. The remaining five lakes historically had fish populations, but fish were not collected in 1979 when pH ranged betwen 4.6 and 5.3. By 1987, fish species were found in five of these lakes where pH had increased on average by 0.9 pH units. Our data indicate that water quality improvements could allow for the reinvasion or resumption of recruitment for a significant number of Ontario lakes.  相似文献   

14.
Snucins E 《Ambio》2003,32(3):225-229
The recolonization of acid-damaged lakes in Killarney Park, Canada is described for 3 species of benthic invertebrates; 2 mayflies (Stenonema femoratum, Stenacron interpunctatum) and an amphipod (Hyalella azteca). Synoptic surveys of 119 lakes for amphipods and 77 lakes for mayflies were conducted between 1995 and 1997 and defined pH thresholds of 5.6 for S. femoratum and H. azteca and pH 5.3 for S. interpunctatum. In an intensive study of 2 acid-damaged lakes and 2 reference lakes from 1997 to 2002, reestablishment of S. interpunctatum, S. femoratum and H. azteca occurred, when timing of the events could be estimated, less than 4-8 years after pH thresholds for specific taxa were reached. Dispersal of S. interpunctatum to all habitat patches within a lake was completed 3 years after recolonization was detected in the smallest lake (11 ha). It is anticipated that dispersal throughout the largest lake (189 ha) will take much longer. The time lag from estimated pH recovery to reestablishment and subsequent dispersal of mayflies to all suitable habitats within a lake was as much as 11 to 22+ years. The density of S. interpunctatum increased in the recovering lakes to levels higher than in reference lakes, but stable endpoints have not yet been reached during 6 years of monitoring.  相似文献   

15.
Two headwater streams with low DOC and different pHs (4.5-4.8 and 5-6.5) were acidified with H2SO4 to pH 4.1 and 4.5, respectively, for 24-h periods. Neutralization of the added acid occurred by protonation of ANC (HCO3-dominated in the higher pH stream), desorption of Ca (< 15 microeq litre(-1)) and Mg (<6 microeq litre(-1)), and desorption and dissolution of AL (<250 microg litre(-1)) from the stream bed. The concentrations of dissolved organic carbon (DOC) remained constant within the experimental reaches. The concentrations of Na, K an H4SiO4 also remained constant, indicating no detectable increase in the rate of chemical weathering in the stream bed. After acid addition was stopped, concentrations of Ca, Mg and Al decreased to below background, indicating reversible ion exchange as the principal mechanism for the mobility of Ca and Mg and to a lesser extent for Al. Repeated acidifications indicated that significant regeneration of cations on the exchange surfaces of the stream substrate occurs rapidly.  相似文献   

16.
《Chemosphere》1986,15(3):353-372
Contents of organic and inorganic mercury in food chain specimens, as well as sedimentation in two natural Finnish lakes and three impounded reservoirs, were studied. The proportion of organic mercury of total mercury varied in individual specimens from 32.7 to 100 %. Sedimentation (settleable solid) with very high contents of organic matter had ratios of organic to total mercury ranging from 2.4 to 87.3 %. These variations were similar in each of five water ecosystems studied. Benthic invertebrates had higher ratios of organic to total mercury than reported earlier. Total mercury concentrations in fish, zoobenthos and zooplankton of young impounded reservoirs were significantly higher than those of natural lakes. To explain this it is suggested that humic materials transfer mercury to the water and thence into the food chain.  相似文献   

17.
The recent browning (increase in color) of surface waters across much of the northern hemisphere has important implications for light climate, ecosystem functioning, and drinking water treatability. Using log-linear regressions and long-term (6–21 years) data from 112 Swedish watercourses, we identified temporal and spatial patterns in browning-related parameters [iron, absorbance, and total organic carbon (TOC)]. Flow variability and lakes in the catchment were major influences on all parameters. Co-variation between seasonal, discharge-related, and trend effects on iron, TOC, and absorbance were dependent on pH, landscape position, catchment size, latitude, and dominant land cover. Large agriculture-dominated catchments had significantly larger trends in iron, TOC, and water color than small forest catchments. Our results suggest that while similarities exist, no single mechanism can explain the observed browning but show that multiple mechanisms related to land cover, climate, and acidification history are responsible for the ongoing browning of surface waters.  相似文献   

18.
《Environmental Forensics》2013,14(3-4):243-250
The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings (Boehm et al ., 2001) that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.  相似文献   

19.
Two two-stage sequencing batch reactors (TSSBR), one attached-growth and one suspended-growth, were operated under three levels of wastewater concentration (approximately 4,000, 2,000 and 500 TOC mg/L), respectively, to compare the pH and ORP (oxidation-reduction potential) patterns and system performance. In both TSSBR systems, the pH and ORP profiles varied with organic loading yet exhibited consistent patterns with distinctive features suitable for real-time control. For all runs at the three levels of influent, both systems achieved similar levels of treatment for BOD5, TOC and TSS of over 97.5, 93.4, and 97.3%, respectively. The attached-growth system out performed the suspended-growth system in achieving the same levels of treatment at much shorter aeration cycle times. The treatment efficiency for NO3(-)-N and PO4(-3) was greatly affected by the carbon content in the wastewater, and the best treatment was achieved during the TOC approximately 4,000 mg/L runs with final effluent at 4.0 and 21.3 mg/L, respectively.  相似文献   

20.
Liao CH  Lu MC  Su SH 《Chemosphere》2001,44(5):913-919
The purpose of this study is to reveal the role of cupric ions as a natural water contaminant in the H2O2/UV oxidation of humic acids. Humic acids are naturally occurring organic matter and exhibit a strong tendency of complexation with some transition metal ions. Chlorination of humic acids causes potential health hazards due to formation of trihalomethane (THM). The removal of THM precursors has become an issue of public concern. The H2O2/UV process is capable of mineralizing humic acids due to formation of a strong oxidant, hydroxyl radicals, in reaction solution. Experiments were conducted in a re-circulated photoreactor. Different cupric concentrations (0-3.8 mg/l) and different pH values (4-9) were controlled to determine their effects on the degradation of humic acids, UV light absorbance at 254 nm, and H2O2. The presence of cupric ions inhibits humic mineralization and decreases the rate of destruction of humic acids which absorb UV light at 254 nm. On the other hand, the higher the cupric concentration, the lower the H2O2 decomposition rate. In the studied pH range, the minimum of total organic carbon (TOC) removal occurs at pH = 6 in the presence of 2.6 mg/l of cupric ions; both acidification (pH = 4) and alkaline condition (pH = 9) lead to a better removal of TOC. It is inferred from this study that the cupric-complexed form of humic acids is more refractory than the non-complexed one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号