首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A solution is proposed for proving compliance with emission targets and for emissions trading in the event of uncertainties in reported emission inventories. The solution is based on the undershooting concept, from which the mathematical conditions for both proving compliance with a risk α and calculating effective emissions for trading are derived. Based on the reported emission units, the number of permits granted is reduced in proportion to the uncertainty in the inventory. A country whose inventory has higher uncertainty is thereby allotted fewer permits than a country with the same inventory but smaller uncertainty.  相似文献   

2.
Emissions trading in the European Union (EU), covering the least uncertain emission sources of greenhouse gas emission inventories (CO2 from combustion and selected industrial processes in large installations), began in 2005. During the first commitment period of the Kyoto Protocol (2008–2012), the emissions trading between Parties to the Protocol will cover all greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) and sectors (energy, industry, agriculture, waste, and selected land-use activities) included in the Protocol. In this paper, we estimate the uncertainties in different emissions trading schemes based on uncertainties in corresponding inventories. According to the results, uncertainty in emissions from the EU15 and the EU25 included in the first phase of the EU emissions trading scheme (2005–2007) is ±3% (at 95% confidence interval relative to the mean value). If the trading were extended to CH4 and N2O, in addition to CO2, but no new emissions sectors were included, the tradable amount of emissions would increase by only 2% and the uncertainty in the emissions would range from −4 to +8%. Finally, uncertainty in emissions included in emissions trading under the Kyoto Protocol was estimated to vary from −6 to +21%. Inclusion of removals from forest-related activities under the Kyoto Protocol did not notably affect uncertainty, as the volume of these removals is estimated to be small.  相似文献   

3.
We investigated the Austrian national greenhouse gas emission inventory to review the reliability and usability of such inventories. The overall uncertainty of the inventory (95% confidence interval) is just over 10% of total emissions, with nitrous oxide (N2O) from soils clearly providing the largest impact. Trend uncertainty – the difference between 2 years – is only about five percentage points, as important sources like soil N2O are not expected to show different behavior between the years and thus exhibit a high covariance. The result is very typical for industrialized countries – subjective decisions by individuals during uncertainty assessment are responsible for most of the discrepancies among countries. Thus, uncertainty assessment cannot help to evaluate whether emission targets have been met. Instead, a more rigid emission accounting system that allows little individual flexibility is proposed to provide harmonized evaluation uninfluenced by the respective targets. Such an accounting system may increase uncertainty in terms of greenhouse gas fluxes to the atmosphere. More importantly, however, it will decrease uncertainty in intercountry comparisons and thus allow for fair burden sharing. Setting of post-Kyoto emission targets will require the independent evaluation of achievements. This can partly be achieved by the validation of emission inventories and thorough uncertainty assessment.  相似文献   

4.
The uncertainty of reported greenhouse gases emission inventories obtained by the aggregation of partial emissions from all sources and estimated to date for several countries is very high in comparison with the countries’ emissions limitation and reduction commitments under the Kyoto Protocol. Independent calculation of the estimates could confirm or question the undertainty estimates values obtained thus far. One of the aims of this paper is to propose statistical signal processing methods to enable calculation of the inventory variances. The annual reported emissions are used and temporal smoothness of the emissions curve is assumed. The methods considered are: a spline-function-smoothing procedure; a time-varying parameter model; and the geometric Brownian motion model. These are validated on historical observations of the CO2 emissions from fossil fuel combustion. The estimates of variances obtained are in a similar range to those obtained from national inventories using TIER1 or TIER2. Additionally, some regularities in the observed curves were noticed.  相似文献   

5.
In a step-by-step exercise – beginning at full greenhouse gas accounting (FGA) and ending with the temporal detection of emission changes – we specify the relevant physical scientific constraints on carrying out temporal signal detection under the Kyoto Protocol and identify a number of scientific uncertainties that economic experts must consider before dealing with the economic aspects of emissions and their uncertainties under the Protocol. In addition, we answer one of the crucial questions that economic experts might pose: how credible in scientific terms are tradable emissions permits? Our exercise is meant to provide a preliminary basis for economic experts to carry out useful emissions trading assessments and specify the validity of their assessments from the scientific point of view, that is, in the general context of a FGA-uncertainty-verification framework. Such a basis is currently missing.  相似文献   

6.
Methane (CH4) and nitrous oxide (N2O) are included in the six greenhouse gases listed in the Kyoto protocol that require emission reduction. To meet reduced emission targets, governments need to first quantify their contribution to global warming. Composting has been identified as an important source of CH4 and N2O. With increasing divergence of biodegradable waste from landfill into the composting sector, it is important to quantify emissions of CH4 and N2O from all forms of composting and from all stages. This study focuses on the final phase of a two stage composting process and compares the generation and emission of CH4 and N2O associated with two differing composting methods: mechanically turned windrow and vermicomposting. The first stage was in-vessel pre-treatment. Source-segregated household waste was first pre-composted for seven days using an in-vessel system. The second stage of composting involved forming half of the pre-composted material into a windrow and applying half to vermicomposting beds. The duration of this stage was 85 days and CH4 and N2O emissions were monitored throughout for both systems. Waste samples were regularly subjected to respirometry analysis and both processes were found to be equally effective at stabilising the organic matter content. The mechanically turned windrow system was characterised by emissions of CH4 and to a much lesser extent N2O. However, the vermicomposting system emitted significant fluxes of N2O and only trace amounts of CH4. In-vessel pre-treatment removed considerable amounts of available C and N prior to the second stage of composting. This had the effect of reducing emissions of CH4 and N2O from the second stage compared to emissions from fresh waste found in other studies. The characteristics of each of the two composting processes are discussed in detail. Very different mechanisms for emission of CH4 and N2O are proposed for each system. For the windrow system, development of anaerobic zones were thought to be responsible for CH4 release. High N2O emission rates from vermicomposting were ascribed to strongly nitrifying conditions in the processing beds combined with the presence of de-nitrifying bacteria within the worm gut.  相似文献   

7.
World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO2, NOx and CO2. The estimated results show that CO2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO2 emissions in 2020.  相似文献   

8.
Reduce, reuse, and recycle (3R) policies form the basis of waste management and global warming countermeasures globally, so we conducted a comparative study of 3R and waste management policies in the European Union (EU), USA, Korea, Japan, China, and Vietnam. An international workshop for 3R and waste management policymakers was held in Kyoto, Japan, and a bibliographic survey was also conducted to collect data. 3R policies are clearly given priority in the hierarchy of waste management in every country studied. Thermal recovery, which includes power generation from waste heat and methane gas collected from organic waste, is also a priority; this is consistent with the increased use of countermeasures to reduce greenhouse gas (GHG) emissions. In the EU, waste management is characterized by practical and effective 3R policies through the development of realistic regulations and by the policymakers??desire to simplify management systems. The policy ideal in China, however, is the development of a circular economy that targets reductions in the amount and hazardousness of waste. Limits on the number of final disposal sites, strategies for procuring resources, and GHG emission countermeasures are closely linked with 3R policies, and further development of 3R policies in parallel with such issues is expected.  相似文献   

9.
The identification and quantitation of non-method-specific target analytes have greater importance with respect to EPA's current combustion strategy. The risk associated with combustion process emissions must now be characterized. EPA has recently released draft guidance on procedures for the collection of emissions data to support and augment site-specific risk assessments (SSRAs) as part of the hazardous waste incineration permitting process. This guidance includes methodology for quantifying total organic (TO) emissions as a function of compound volatility. The ultimate intent is to compare the amount of organic material identified and quantified by target analyte-specific methodologies to organic emissions quantified by the TO methodology. The greater the amount accounted for by the target analyte-specific methodologies, the less uncertainty may be associated with the SSRAs. A limitation of this approach is that the target analyte-specific methodologies do not routinely quantify compounds of low toxicological interest; nor do they target products of incomplete combustion (PICs). Thus, the analysis can miss both toxic and non-toxic compounds. As a result, it is unknown whether the uncharacterized fraction of the TO emission possesses toxic properties. The hypothesis that we propose to test is that organic emissions and organics extracted from particulate matter (PM) are more complex than standard GC-MS-based instrumentation can currently measure. This complexity can affect quantitation for toxic compounds, thereby potentially affecting risk assessments. There is a pressing need to better characterize these organic emissions from hazardous waste incinerators and PM extracts from various other combustion sources. We will demonstrate that multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures significantly improve chromatographic separation for complex environmental samples. Sequential repetitive heart-cutting MDGC, with coupled mass spectrometry will be shown to be a complete analysis technique. The ability of this technique to disengage components from complex mixtures taken from hazardous and municipal waste incinerators will be shown.  相似文献   

10.
Role of waste management with regard to climate protection: a case study.   总被引:1,自引:0,他引:1  
According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.  相似文献   

11.
The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change.  相似文献   

12.
Due to initiatives such as the clean development mechanism (CDM), reducing greenhouse gas emissions for a developing country can offer an important route to attracting investment in a variety of qualifying project areas, including waste management. To date CDM projects have been largely confined to schemes that control emission from landfill, but projects that avoid landfilling are beginning to be submitted. In considering the waste options which might be suitable for developing countries certain ones, such as energy from waste, have been discounted for a range of reasons related primarily to the lack of technical and other support services required for these more sophisticated process trains. The paper focuses on six options: the base case of open dumping; three options for landfill (passive venting, gas capture with flaring, and gas capture with energy production), composting and anaerobic digestion with electricity production and composting of the digestate. A range of assumptions were necessary for making the comparisons based on the effective carbon emissions, and these assumptions will change from project to project. The highest impact in terms of carbon emissions was from using a sanitary landfill without either gas flaring or electricity production; this was worse than the baseline case using open dumpsites. Landfills with either flaring or energy production from the collected gas both produced similar positive carbon emissions, but these were substantially lower than both open dumping and sanitary landfill without flaring or energy production. Composting or anaerobic digestion with energy production and composting of the digestate were the two best options with composting being neutral in terms of carbon emissions and anaerobic digestion being carbon negative. These generic conclusions were tested for sensitivity by modifying the input waste composition and were found to be robust, suggesting that subject to local study to confirm assumptions made, the opportunity for developing CDM projects to attract investment to improved waste management infrastructure is significant. Kyoto credits in excess of 1 tCO2e/t of waste could be realised.  相似文献   

13.
Methane (CH4) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH4 is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH4 emissions from landfill sites and the quantification of CH4 emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH4 diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH4 diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH4 contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH4 mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.  相似文献   

14.
Most ammonia (NH3) emission inventories have been calculated on an annual basis and do not take into account the seasonal variability of emissions that occur as a consequence of climate and agricultural practices that change throughout the year. When used as input to atmospheric transport models to simulate concentration fields, these models therefore fail to capture seasonal variations in ammonia concentration and dry and wet deposition. In this study, seasonal NH3 emissions from agriculture were modelled on a monthly basis for the year 2000, by incorporating temporal aspects of farming practice. These monthly emissions were then spatially distributed using the AENEID model (Atmospheric Emissions for National Environmental Impacts Determination). The monthly model took the temporal variation in the magnitude of the ammonia emissions, as well as the fine scale (1-km) spatial variation of those temporal changes into account to provide improved outputs at 5-km resolution. The resulting NH3 emission maps showed a strong seasonal emission pattern, with the highest emissions during springtime (March and April) and the lowest emissions during summer (May to July). This emission pattern was mainly influenced by whether cattle were outside grazing or housed and by the application of manures and fertilizers to the land. When the modelled emissions were compared with measured NH3 concentrations, the comparison suggested that the modelled emission trend corresponds fairly well with the seasonal trend in the measurements. The remaining discrepancies point to the need to develop functional parametrisations of the interactions with climatic seasonal variation.  相似文献   

15.
In this paper, we study empirically whether uncertainty has an influence on trade in the US sulfur dioxide allowances market. In particular, we investigate the role of uncertainty on banking behavior. To do this, we introduce a tractable, structural model of trading permits under uncertainty. The model establishes a relation between banking behavior and risk preferences, especially prudence in the Kimball (1990) sense. We then test this model using data on allowances, for utilities submitted to the US Environmental Protection Agency’s Acid Rain Program, carried over from one year to the next. Evidence is found of imprudence, namely, utilities bank permits in order to favor higher profits. Another finding is that larger utilities do not adopt behavior significantly different from that of smaller ones. This paper was presented at the “International Workshop on Uncertainty in Greenhouse Gas Inventories: Verification, Compliance & Trading” in Warsaw, Poland, September 2004, under the title “Portfolio Management of Emissions Permits and Prudence Behavior.”  相似文献   

16.
Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.  相似文献   

17.
The first-order decay (FOD) model is widely used to estimate landfill gas generation for emissions inventories, life cycle assessments, and regulation. The FOD model has inherent uncertainty due to underlying uncertainty in model parameters and a lack of opportunities to validate it with complete field-scale landfill data sets. The objectives of this paper were to estimate methane generation, fugitive methane emissions, and aggregated collection efficiency for landfills through a mass balance approach using the FOD model for gas generation coupled with literature values for cover-specific collection efficiency and methane oxidation. This study is unique and valuable because actual field data were used in comparison with modeled data. The magnitude and variation of emissions were estimated for three landfills using site-specific model parameters and gas collection data, and compared to vertical radial plume mapping emissions measurements. For the three landfills, the modeling approach slightly under-predicted measured emissions and over-estimated aggregated collection efficiency, but the two approaches yielded statistically equivalent uncertainties expressed as coefficients of variation. Sources of uncertainty include challenges in large-scale field measurement of emissions and spatial and temporal fluctuations in methane flow balance components (generated, collected, oxidized, and emitted methane). Additional publication of sets of field-scale measurement data and methane flow balance components will reduce the uncertainty in future estimates of fugitive emissions.  相似文献   

18.
Applying guidance for methane emission estimation for landfills   总被引:1,自引:0,他引:1  
Quantification of methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. Both the United Nations and the European Union have adopted protocols to ensure quantification of methane emission from individual landfills. The purpose of these protocols is to disclose emission data to regulators and the general public. Criteria such as timeliness, completeness, certainty, comparability, consistency and transparency are set for inclusion of emission data in a publicly accessible database. All methods given as guidance to landfill operators to estimate landfill methane emissions are based on models. In this paper the consequences of applying six different models for estimates of three landfills are explored. It is not the intention of this paper to criticise or validate models. The modelling results are compared with whole site methane emission measurements. A huge difference in results is observed. This raises doubts about the accuracy of the models. It also indicates that at least some of the criteria previously mentioned are not met for the tools currently available to estimate methane emissions from individual landfills. This will inevitably lead to compiling and comparing data with an incomparable origin. Harmonization of models is recommended. This may not necessarily reduce uncertainty, but it will at least result in comparable, consistent and transparent data.  相似文献   

19.
Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public–private partnerships through a concerted support of the informal sector.  相似文献   

20.
The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO2, CH4, N2O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号