首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
以模拟江水-双穗雀稗-土壤构成的有机体系为研究对象,通过动态模拟实验,研究了外源重金属Cd2+、Zn2+单一及复合处理时对双穗雀稗生长及外源重金属在水体、土壤和双穗雀稗中的迁移富集情况。结果表明:较低浓度的水体Cd、Zn对双穗雀稗生长几乎没影响,高浓度时对其生长有抑制作用。双穗雀稗主要通过根、茎富集重金属离子,随着处理浓度的增加迁移富集量逐渐增大,迁移富集量地下部地上部,Cd、Zn在双穗雀稗中的迁移表现出协同效应,而在土壤中Cd对Zn的迁移富集存在拮抗作用,Zn对Cd的迁移富集存在协同作用。双穗雀稗可明显降低水体中外源重金属Cd、Zn的含量,是三峡库区消落带植被重建、修复重金属(Cd、Zn)污染的优良物种之一。  相似文献   

2.
为了快速高效地处理突发性事故造成的苯胺污染土壤,在水泥固化稳定化苯胺污染土壤时加入过硫酸盐和活性炭,评估固化稳定化产物中苯胺的浸出特征和降解机理. 结果表明:①过硫酸盐的加入可以快速有效地去除污染土壤中高浓度(10 g/kg)的苯胺,当反应时间为10 min、过硫酸盐添加量为1.0 eq(即过硫酸盐与土壤中苯胺的摩尔浓度比为1.0)时,处理后土壤中苯胺残留量为1 345 mg/kg;过硫酸盐添加量为2.0 eq时,苯胺残留量为43 mg/kg,反应时间对苯胺的去除效率影响不大,碱性条件有利于苯胺的降解. ②过硫酸盐-活性炭-水泥复合固化稳定化剂可以有效固化稳定化高浓度苯胺污染土壤,过硫酸盐的加入可以有效氧化土壤中的苯胺,是浸出液中ρ(苯胺)降低的主要因素;活性炭的加入可以进一步吸附残留的苯胺及降解产物,使浸出液中ρ(TOC)大幅降低;水泥水化产生的强碱性和温度升高有助于过硫酸盐对苯胺的氧化降解. ③苯胺氧化降解产物分析发现,偶氮苯、苯酚和联苯胺是苯胺的主要降解产物.   相似文献   

3.
选用西北地区砂土为供试土壤,苯酚作为实验模拟研究的有机污染物,在电动修复技术的基础上加入超声波,联合降解土壤中的苯酚污染物。结果表明,电动技术修复苯酚污染土壤时,加入超声波有利于苯酚的迁移和富集。含水率的增加可以使苯酚的迁移距离增大,当土壤含水率为16%时,富集量可达到153%。超声波的声强可以使苯酚的迁移幅度增大,最大富集率可达到105%。因此,电动法联合超声波降解苯酚效果显著,具有良好的应用前景。  相似文献   

4.
通过Batch法研究了土壤吸附苯胺的动力学特征;通过土柱试验模拟了苯胺在土壤中的扩散,同样通过土柱试验研究了两种应急处置方法。试验结果表明,土壤吸附苯胺的反应呈现快速反应和慢速反应两个阶段,以快速吸附反应为主;苯胺在土壤中的扩散浓度与扩散深度的关系可用指数方程表征。通过动力学吸附试验和苯胺在土壤中的迁移试验的结果,确定了挖掘距表面层50ram的污染土壤和在污染表面撒粉末活性炭吸附两种有效的应急处置方法。  相似文献   

5.
《环境科学与技术》2021,44(3):79-85
土壤化学修复过程中氧化剂在介质中的迁移过程,是该技术提高氧化降解效率的关键理论依据。该文将电动修复技术与过硫酸盐氧化技术联合,研究直流电场驱动下过硫酸钠在土壤介质中的迁移行为,分析了过硫酸根离子在未污染土壤与石油烃污染土壤中的迁移变化。研究结果表明,石油烃的加入会降低过硫酸根离子在土壤中的迁移速率、迁移量。在石油烃污染土壤中,过硫酸根离子的最大迁移速率为5.76 cm/d,平均浓度最高占投加量的37.68%,与未污染土壤相比,迁移速率降低了16.4%。石油烃的去除率在过硫酸钠投加量为80 g/L时,最靠近阴极投加点的S5区域最高为38%。研究结果可为污染土壤修复技术的优化提供理论支撑。  相似文献   

6.
某污灌区污水-土壤-地下水污染物分布特征   总被引:3,自引:1,他引:2  
通过对某污灌区灌溉水、土壤及地下水的取样分析,研究了灌区污染物的分布特征。结果表明:灌区主要污染物为重金属Zn、多环芳烃和农残六六六。不同污染物分布特征不同。重金属主要富集于土壤表层,如Zn大部分富集于耕植层中(0~30cm),但浓度过高,其可向深部迁移。多环芳烃按分子量可分为三类,小分子量芳烃迁移过程中降解转化显著;中分子量芳烃迁移至深部土壤和地下水,土壤各深度吸附量几乎相同;大分子量芳烃化学性质稳定,易吸附沉积于表层土壤和底泥中。农残六六六迁移深度至少可达50m。  相似文献   

7.
天津地区土壤有机碳和粘粒对PAHs纵向分布的影响   总被引:12,自引:3,他引:12  
研究了天津地区土壤中有机碳(TOC)和粘粒含量对多环芳烃(PAHs)纵向分布的影响,利用相对富集系数分析了PAHs在不同土壤深度的富集趋势.结果表明,土壤剖面中PAHs含量峰值一般在土壤的表层和次表层,并随着土壤剖面的加深而减少.土壤中有机碳含量、土壤粒度、PAHs性质和扰动、淋溶等均是影响PAHs纵向迁移的重要因素.PAHs相对富集在有机碳和粘粒含量较高的土壤中.高环PAHs主要是以与土壤有机质胶体结合的形式发生迁移,不易迁移到土壤剖面的深部,而低环PAHs则主要是以溶解态形式发生迁移,相对较易发生迁移.   相似文献   

8.
对21个金属矿区作了调查,发现埋藏深达300m或被160m厚土壤覆盖的矿体以及富汞岩石在其上方土壤中含汞量明显增高。本工作初步探讨了含汞地质体中汞的迁移和转化。试验表明,地质体中汞呈多种存在形式,其中汞可转化为气态和可溶态,并沿岩石孔隙和断裂构造向上迁移。含汞硫化物中汞的迁移是与汞的含留及其存在形式、矿物组成、地下水的性质和活动以及迁移通道的发育程度有关。在含氯离子浓度高的地下水条件下,可溶性汞将以稳定络合物形式长距离迁移。土壤中的有机质,铁、锰高价氧化物,粘土矿物等对表层土壤中汞的富集有重要影响。  相似文献   

9.
采用振荡平衡法和淋洗法,研究了污灌条件下非离子表面活性剂Tween-80在表层土壤和深层土壤上的吸附行为及其对有机农药甲萘威迁移的影响。结果表明:在振荡平衡条件下,低Tween-80浓度的污水灌溉会促进甲萘威在表层土壤中的吸附,而高Tween-80浓度的污水灌溉会抑制甲萘威在深层土壤中的吸附;在淋洗条件下,Tween-80在深层土壤中表现出较强的吸附能力。  相似文献   

10.
为了解地质高背景区农田土壤的重金属富集及迁移特点,该文对2种不同地质高背景(江苏玄武岩区和浙江黑色页岩区)农田土壤及水稻籽实中元素(Cd、Cr、Cu、Ni、Pb、Zn、As)分布特征进行分析;研究2个地区土壤-水稻系统中重金属迁移富集差异及主要影响因素,并结合土壤基本理化性质和有效态重金属建立对水稻籽实中主要重金属含量的预测模型。研究结果表明,Cd是江浙地质高背景区农田土壤中暴露风险最高的重金属元素,其中重金属元素Zn、Cu、Cd的生物富集因子最高,Ni和As相对较高,Cr和Pb最低,江苏玄武岩区农田土壤中Ni的迁移能力较强而浙江黑色页岩区Cd的迁移能力较强。土壤pH、CaO和Fe2O3等理化性质是影响农田土壤中重金属迁移能力的关键因素。回归预测模型表明,水稻籽实中重金属累积受到pH、CEC、黏土矿物和碳酸盐矿物的显著影响,而EDTA提取的有效态重金属更容易在水稻籽实中迁移富集。  相似文献   

11.
表面活性剂增效洗脱修复技术被广泛应用于土壤修复. 本文选取11种非离子型和3种离子型表面活性剂对多环芳烃(PAHs,菲、芘、苯并[a]芘)污染土壤进行洗脱研究,筛选出洗脱效果较好的表面活性剂,并深入探索表面活性剂浓度、洗脱时间、固液比等因素以及表面活性剂的复配对土壤PAHs增效洗脱的影响,旨在比选出一种高效洗脱土壤PAHs的表面活性剂并对其洗脱方法进行优化. 结果表明:①表面活性剂浓度为10 g/L、固液比为1∶20条件下,聚氧乙烯醚-10(NSF10)的去除率最高,达到78%;其次为曲拉通X-100(TX-100)和吐温80(TW-80),去除率分别为76.7%和73.4%. ②随着表面活性剂添加浓度的增加,土壤PAHs的去除率增大,当表面活性剂浓度超过5 g/L时,PAHs去除率的增幅减缓,可见,5 g/L是相对有效且经济的表面活性剂添加浓度. ③当洗脱时间为16 h时,NSF10对PAHs的洗脱达到平衡,继续延长洗脱时间,洗脱效果并未增强. ④增加NSF10用量有利于洗脱,固液比1∶40是最优固液比,此时PAHs的去除率已达到固液比为1∶100时的85.2%. ⑤非离子表面活性剂NSF10、TX-100、TW-80与阴离子表面活性剂SDS分别以体积比9∶1进行复配时均取得了优于单一活性剂的洗脱效果,NSF10与SDS体积比为7∶3时,增溶洗脱效果最为明显,比单一表面活性剂提高了18.2%. 研究显示,NSF10是一种高效的PAHs洗脱剂,添加浓度为5 g/L、洗脱时间为16 h、固液比为1∶40是其最优参数选择,其与SDS以体积比7∶3进行复配可进一步提升增溶洗脱效果.   相似文献   

12.
红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化   总被引:10,自引:0,他引:10  
采用根形态研究、显微镜观察和透射电子显微镜观察,研究了红壤模拟铜污染下紫云英根表形态及其组织、细胞结构变化.结果表明:当污染铜为0~40mg·kg-1时,紫云英生长发育正常,根形态完好,功能正常.当污染铜水平在50 mg·kg-1以上时,紫云英根开始出现受害症状:表现在根粗短呈淡褐色,根毛少且短,主根弯曲,并分出较短的叉根;表皮层出现皱缩;细胞壁略呈波浪形,厚薄不均,质膜界线不明显.紫云英地上部分生长发育受影响,产量开始下降.铜污染水平达到200mg·kg-1时,根腐烂、组织黑色化、细胞壁断裂,胞质严重收缩解离,紫云英死亡,表明供试红壤临界铜污染浓度为50mg·kg-1,并且紫云英根对土壤铜污染的耐性随生育期延长而增强,根细胞壁是根耐毒的主要部位.  相似文献   

13.
利用室内培养试验比较研究了硝酸盐氮和氨氮对洋河水库螺旋鱼腥藻和惠氏微囊藻生长的影响. 结果表明:ρ(氨氮)和ρ(硝酸盐氮)均在0.05~10 mg/L内时,螺旋鱼腥藻的生长曲线无显著性差异,氨氮更有利于螺旋鱼腥藻的生长;在0.05~10 mg/L内,ρ(氨氮)和ρ(硝酸盐氮)的升高能明显促进惠氏微囊藻的生长,但高浓度的氨氮可能会抑制其生长. 当ρ(硝酸盐氮) 为0.05 mg/L时,螺旋鱼腥藻比生长速率(0.239 d-1)大于惠氏微囊藻(0.166 d-1); ρ(氨氮)为0.05和0.5 mg/L时,螺旋鱼腥藻的比生长速率分别为(0.266±0.012)和(0.303±0.005)d-1,大于惠氏微囊藻的比生长速率(0.096±0.004)和(0.272±0.008)d-1. 提示在ρ(氨氮)和ρ(硝酸盐氮)较低的培养条件下,螺旋鱼腥藻比生长速率更高,更易成为优势藻种. 洋河水库近2年优势种逐渐从螺旋鱼腥藻转变为惠氏微囊藻,可能是水体中ρ(氮)的变化所致.   相似文献   

14.
以纯米糠为前体制备水热炭,通过扫描电子显微镜、傅里叶红外光谱仪和元素分析仪等手段表征其物理化学性质;研究时间、p H、Pb~(2+)初始浓度等因素对其吸附Pb~(2+)的影响,以及其对污染土壤中Pb存在形态的影响。结果表明,纯米糠水热炭表面呈现多孔和网状结构,且含有丰富的表面含氧官能团,对溶液中Pb~(2+)有很强的吸附作用,p H=5时吸附效果最好,吸附24 h基本达到平衡。当Pb~(2+)初始浓度为80 mg/L,水热炭投加量为0.75 g/L时,水热炭对Pb~(2+)的吸附量可达72.44 mg/g。将水热炭投加到Pb污染土壤中,能有效降低弱酸提取态Pb含量,提高残渣态Pb含量,使Pb向更加稳定的状态转化。  相似文献   

15.
纳米银与石墨烯对土壤微生物及土壤酶的影响   总被引:2,自引:0,他引:2  
采用室内暗培养试验分别探究了纳米银与石墨烯对土壤微生物及土壤酶的不同影响.将不同剂量的纳米银(0、10、100、150 mg·kg~(-1))与高纯石墨烯(0、10、100、1000 mg·kg~(-1))分别与等量棕壤充分混匀,然后进行暗培养.在第3、7、15、30和60 d时取样,测定土壤脲酶、土壤碱性磷酸酶、土壤脱氢酶和土壤过氧化氢酶的活性及土壤细菌、真菌和放线菌的数量,并在培养期间测定土壤呼吸速率及CO2累积量.结果表明,所有纳米银处理均抑制土壤的呼吸作用,并且剂量越高,抑制作用越明显;而石墨烯处理未对土壤呼吸产生显著影响.10 mg·kg~(-1)纳米银处理下,土壤真菌数量在整个培养期内均显著低于对照,土壤细菌在第60 d时也被显著抑制,但土壤放线菌数量无变化;与对照相比,100和150 mg·kg~(-1)的纳米银处理显著降低了土壤细菌、真菌、放线菌的数量.10和100 mg·kg~(-1)的石墨烯处理下,土壤细菌、真菌、放线菌数量则均无显著变化.1000 mg·kg~(-1)的石墨烯显著增加了土壤中细菌与真菌的数量,却对土壤放线菌数量无影响.纳米银处理显著抑制土壤脲酶、脱氢酶活性,却对土壤过氧化氢酶与磷酸酶活性基本无影响.10和100 mg·kg~(-1)石墨烯处理对土壤脲酶有一定的促进作用,1000 mg·kg~(-1)石墨烯处理对土壤过氧化氢酶和脱氢酶有一定的促进作用,而不同剂量的石墨烯在培养后期均对碱性磷酸酶产生抑制作用.总体来说,纳米银在一定程度上对土壤酶及土壤微生物结构产生了负面影响,而石墨烯对土壤酶及土壤微生物结构的影响不明显.  相似文献   

16.
为研究抗坏血酸与柠檬酸作为增强试剂对高酸性缓冲能力的尾矿Pb污染土壤[w(Pb)为(5491.9±24)mg/kg]电动修复的强化效果,利用0.1 mol/L柠檬酸作为阴极电解液并控制阴极pH在2~3之间,系统分析土壤饱和液中c(抗坏血酸)(0~0.4 mol/L)、修复电压梯度(1~3 V/cm)对电动修复Pb污染土壤的影响,并对土壤中Pb的存在形态进行分析.结果表明:当电动修复过程中施加电压梯度为1 V/cm、c(抗坏血酸)(0~0.4 mol/L)作为饱和液时,随着c(抗坏血酸)的增加,土壤中Pb的迁移能力随之增加,Pb的去除率得到提高.当c(抗坏血酸)达到0.4 mol/L时,土壤中Pb的去除率为36.86%;保持c(抗坏血酸)为0.4 mol/L,当施加电压梯度由1 V/cm增至2 V/cm时,土壤中Pb的去除率得到增加(最高可达87.09%),通过Pb的形态变化可知,w(弱酸提取态Pb)由初始的2.99%(1 V/cm)最大可降至0.34%(2 V/cm),w(可还原态Pb)由初始的83.86%(1 V/cm)最大降至2.94%(2 V/cm).研究显示,当c(抗坏血酸)为0.4 mol/L、柠檬酸(作为阴极电解液)控制阴极电解室pH在2~3之间、施加电压梯度为2 V/cm时,土壤中Pb的迁移能力显著提高并达到较好的修复效果.   相似文献   

17.
采集内蒙古河套灌区盐碱土壤(电导率EC为0.27mS/cm),利用NaCl调节土壤电导率为(0,10,20,40,80mS/cm),基于稳定碳同位素分析不同电导率土壤添加定量δ13C-CO2后,土壤CO2吸收量以及土壤难溶性无机碳含量(SIC)-δ13C值.结果表明,盐碱土壤能够吸收CO2,随土壤电导率(EC)升高,土壤CO2累积吸收量增加, S5(EC=80mS/cm) CO2累积吸收量比S1(0.27mS/cm)高1.6640mg.土壤SIC含量(R2=0.7080,P<0.05)和土壤可溶性无机碳含量(DIC)(R2=0.6096,P<0.05)与土壤EC显著负相关关系.盐碱土壤吸收CO2部分固存于土壤无机碳中,外源添加δ13C-CO2,盐碱土壤SIC-δ13C值(-5.299‰ ~ -0.8341‰)显著增加.EC为20mS/cm土壤固相保存δ13C-CO2总量最高1.276mg,固存δ13C-CO2总量占土壤吸收13CO2总量比例30.28%最高;EC为80mS/cm固碳量最低为0.2749mg,固存δ13C-CO2总量占土壤吸收13CO2总量比例5.579%.  相似文献   

18.
吐温80对硝基苯的增溶作用和无机电解质作用机理研究   总被引:3,自引:1,他引:2  
李隋  赵勇胜  徐巍  戴宁 《环境科学》2008,29(4):920-924
研究了在10℃条件下,非离子表面活性剂吐温80对硝基苯的增溶作用.结果表明,吐温80在临界胶束浓度(CMC)以上能够显著提高硝基苯的溶解度,对硝基苯的增溶曲线呈线性关系,MSR值为5.093,lgKm为3.499.硝基苯的增溶作用为吐温80胶束中聚氧乙烯链形成的聚醚微环境作用的结果.并考察了4种无机电解质NaCl、KCl、CaCl2、MgCl2对硝基苯增溶作用的影响,结果表明,4种高浓度(≥500 mg·L-1)无机电解质的加入,均使吐温80溶液中硝基苯的浓度有所增加,增溶曲线仍呈线性关系.在吐温80与无机电解质质量比为2∶1、5∶1和10∶1时,增溶曲线的MSR值与lgKm值均有提高,硝基苯在吐温80胶束中的分配增强.原因为随着无机电解质与吐温80胶束发生盐析作用.吐温80胶束体积变大,为硝基苯提供了更大的增溶空间.非离子表面活性剂-无机电解质复配体系可以作为表面活性剂强化修复中的一种冲洗液,提高非离子表面活性剂的使用效率,降低成本.  相似文献   

19.
水溶性有机物对土壤吸附-解吸菲的影响   总被引:1,自引:4,他引:1  
以Tween-80为对照,有机物料猪粪(pig manure, PM)、绿肥(green manure, GM)和污泥(sewage sludge, SS)为水溶性有机物(dissolved organic matter, DOM)的提取原料,菲(Phe)为多环芳烃(PAHs)的代表,采用序批试验研究了不同来源DOM对土壤吸附与解吸Phe的影响.结果表明,供试DOM均能明显降低Phe在土壤上的吸附.在DOM试验浓度范围内(0~300 mg·L-1),土壤对Phe的吸附量与DOM浓度之间呈极显著负直线相关关系(rPM>=-0.988?8,rSS>=-0.982?6,rTween-80>=-0.974?3,rGM>=-0.990?5).菲的吸附等温线可用Freundlich方程定量描述.供试3种DOM抑制土壤吸附Phe和促进土壤吸附Phe的解吸的强弱顺序为:猪粪DOM>污泥DOM>绿肥DOM.本研究结果表明,农业土壤中水溶性有机物能明显活化土壤中的PAHs,增强其在土壤中的移动性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号