共查询到20条相似文献,搜索用时 15 毫秒
1.
针对低温低浊水出水浊度不达标的问题进行了絮凝试验研究。结果表明,投加混凝剂聚合氯化铝(PAC)或聚合氯化铝铁(PAFC),剩余浊度、剩余CODMn均有所降低,继续加大投药量,浊度反而升高。进一步试验表明:在PAFC用量为12 mg/L,改性活化硅酸用量为0.12 mg/L条件下,剩余浊度、剩余CODMn分别达到0.21 mg/L和0.64 mg/L。改性活化硅酸的投加时间对混凝效果有一定的影响,混凝开始后330s投加改性活化硅酸可以提高混凝效果。 相似文献
2.
3.
4.
5.
复合混凝剂用于夏季太湖水混凝脱浊研究 总被引:3,自引:0,他引:3
用特征粘度系列化的聚二甲基二烯丙基氯化铵(PDM)与聚合氯化铝(PAC)复合得到稳定的复合混凝剂,用于夏季高藻太湖水强化混凝脱浊处理.通过混凝烧杯实验.考察了无机/有机复合比例、PDM特征粘度对脱浊效果及絮团沉淀性能的影响.结果表明,对浊度为30-33 NTU,温度为28~30℃,藻含量为2.6×107个儿的太湖水,在与某市水厂混凝强度相近的搅拌强度下.当达到该水厂2NTU沉淀池出水的余浊标准时,PAC需7.00 mg/L的投加量.质量复合比例为5:1、10:1、20:1的PAC(以Al2O3计)/PDM复合混凝剂所需PAC投加量随PDM特征粘度0.52、1.53、2.46 dL/g的增加分别为3.00-2.83 ms/L、3.50-3.49ms/L、5.37-4.67 mg/L,相对于PAC减少投加量57.14%-59.57%、50%-50.14%、23.29%-33.29%;作为深度处理的技术准备.当沉淀出水浊度要求提高至1NTU的情况下,复合药剂依然可发挥好的作用,PAC需10 mg/L的投加量,PAC(以Al2O3计)与PDM质量复合配比为20:1、10:1、5:1的复合混凝剂需8.33-3.91 mg/L的投加量,能比PAC减少投加量16.7%~60.9%.可见,PDM明显提高了PAC的混凝脱浊效果与沉淀性能,且PAC/PDM质量复合配比越低,PDM特征粘度越高,脱浊效果与沉淀性能越好. 相似文献
6.
7.
低温低浊水处理是给水处理中的难题之一,本文分析了这种水质难处理的原因,从混凝剂的选择和生产的工艺、技术措施上探讨了低温低浊水处理技术,综述了可从优选混凝剂,完善混合、絮凝工艺,优化过滤工艺等方面加强对低温低浊水的处理. 相似文献
8.
9.
合成了具有不同Fe(Al)/聚二甲基二烯丙基氯化铵(PDMDAAC)质量比的无机-有机复合混凝剂PFC-PDMDAAC和PAC-PDMDAAC,并对夏季引黄水库水进行混凝处理.考察了复合比例、投药量、pH值和投加方式对浊度、有机物和叶绿素-a的去除效果;并通过混凝过程中形成絮体的Zeta电位的变化分析了2种混凝剂的混凝机理.结果表明,无机-有机复合混凝剂处理夏季引黄水库水的效果好于2种单独成分的复配使用;复合比例对PFC-PDMDAAC和PAC-PDMDAAC处理夏季引黄水库水的效果影响较大,Fe(Al)/PDMDAAC质量比为4:1,投药量为4mg/L时混凝效果最好;与无机混凝剂相比,复合混凝剂的最佳pH值范围较广,可在5.0~8.0的pH值范围内取得良好的混凝效果;2种混凝剂相比,PAC-PDMDAAC对浊度和叶绿素-a的去除效果较好,而PFC-PDMDAAC对有机物的去除效果更佳. 相似文献
10.
将高浓度纯化凹凸棒土(HCPA)投加至UF-MBR中,形成HCPA-UF-MBR组合工艺,研究HCPA-UF-MBR、UF-MBR两平行系统对低温高色高氨氮水源水的除污效果、反应器内活性污泥性能及膜污染情况,考察HCPA的作用机理与效能.结果表明,HCPA-UF-MBR对色度、CODMn、NH -N、TN的平均去除率为94.60%、81.61%、98.44%、58.30%,出水NO -N、NO -N浓度均较低;HCPA投加后,UF-MBR的除污效果与抗冲击负荷能力增强,污泥总活性与硝化活性分别提高了9.09%、105.88%,反应器达到稳定时间短且波动小,内部活性污泥硝化反硝化过程更充分;此外,HCPA吸附混合液中部分有机物,改善了污泥混合液性能,使膜表面滤饼层较疏松且透水性较好,有效地减轻了膜污染程度. 相似文献
11.
12.
MBR与A/O工艺处理低温高盐废水的对比试验研究 总被引:1,自引:0,他引:1
就MBR和A/O工艺对高盐废水(50%海水)进行处理效果试验研究,比较了氨氮及总氮去除率随温度的变化情况。试验结果表明:低温条件下MBR与A/O工艺经过长期驯化能够稳定运行且获得较高的去除率;随温度从25qC降低到15℃、9℃、5℃时,MBR工艺的COD去除率从81.6%变化到79%、81.1%、82.7%,A/O工艺的COD去除率从67.9%变化到66.6%、65.5%、78.4%。MBR工艺的氨氮去除率从75%变化到68.3%、57.8%、54.6%,A/O工艺的氨氮去除率从70.4%变化到55.9%、49.2%、48.9%,可见COD受温度变化的影响要比氨氮受温度变化的影响小,但经过一段时间的驯化之后,去除效果逐渐变好,并且MBR工艺比A/O工艺受温度变化的冲击要小,处理效果也相对较好。 相似文献
13.
14.
采用混凝烧杯实验,考察了硫酸铝(AS)/聚二甲基二烯丙基氯化铵(PDM)复合混凝剂的复合比例、PDM 特征黏度对夏季太湖含藻水脱浊效果及絮团沉淀性能的影响,并与预加氯工艺条件下的混凝脱浊效果进行了比较.结果表明,对浊度22~26NTU、温度28~30℃、藻含量2.5×107个/L的太湖水,在与某市水厂混凝强度相近的搅拌强度下,PDM明显提高了AS的混凝脱浊效果与沉淀性能,且AS(以Al2O3计)/PDM复合配比越低,PDM 特征黏度越高,脱浊效果与沉淀性能越好.在达到2NTU 沉淀出水剩余浊度的情况下,AS 需4.27mg/L 的投加量,而质量复合比例为20:1~5:1 的AS/PDM 的复合混凝剂需AS 投加量3.99~2.07mg/L,减少6.56%~51.52%的AS 投加量;在沉淀出水浊度要求提高至1NTU 的情况下,AS 需7.11mg/L 的投加量,而质量复合比例为20:1~5:1 的AS/PDM 复合混凝剂需6.61~3.38mg/L 的投加量,减少AS 投加量13.36%~52.46%.复合混凝剂能够在一定程度上取代预加氯的助凝脱浊功能,尽可能地减少预加氯投加量. 相似文献
15.
针对煤矿低浊含氟水,采用聚合氯化铝(PAC)、复配酸性除氟剂(药剂A)、改性铝铁硅聚合物除氟剂(药剂B)和复合除氟剂(DAMW-04)4种药剂进行除氟试验,分析了水温、pH及主要离子含量对除氟效果的影响。结果表明:当原水氟化物浓度为2.5 mg/L时,PAC、药剂A、药剂B和DAMW-04药剂可分别将氟化物浓度降至1.4 mg/L、1.2 mg/L、0.97 mg/L和0.82 mg/L,DAMW-04除氟效果最佳;在DAMW-04投加量为180 mg/L,絮凝剂(PAM)投加量为1.0 mg/L、水温为20℃、pH为7的条件下,氟化物浓度降至0.91 mg/L并满足《地表水环境质量标准》(GB 3838-2002)Ⅲ类水要求。 相似文献
16.
选取五种常用无机混凝剂,把活性污泥与生活污水按一定比例混合后,进行混凝试验,结果表明,三氯化铁去除TP的效果最好,在投加量为99 mg/l时,可去除污水中88%的TP。三种混凝剂FeCl3、PFS、PAFC与PAM复合进行参数优化的正交试验,对TP有最佳处理效果的絮凝条件为:投加FeCl3,投加量为99 mg/l,投加顺序为FeCl3先投加1 min,以污泥恰搅起不分层的速度搅拌(约160 r/min)30 min。试验结果对投加混凝剂活性污泥法选择合适的混凝剂有借鉴作用。 相似文献
17.
本文对酸性矿井水用作混凝剂的可能性与可行性进行了研究,并与无机混凝剂及PAM的混凝效果进行比较;还研究了酸性矿井水对饮用水,煤泥水,生活污水等的混凝效果,对工业废水中SS,COD的去除能力以及对饮用水水质的影响等;此外还对酸性水用作混凝剂的途径进行了初步探讨。 相似文献
18.
19.
对夏秋季节广州流溪河下游含藻水源水进行了混凝沉淀试验处理,研究了硫酸铝、聚合氯化铝、聚合氯化铝铁、聚合硫酸铁等不同混凝剂及其投加量对藻类和浊度的去除效果,考察了pH值、温度对不同混凝剂去浊率和除藻率的影响,并用zeta电位及显微拍照分析方法,分别对混凝剂的静电中和能力与絮凝体的形态结构进行了初步的研究表征.结果表明,对于pH值为6~8、水温315℃、藻类和浊度分别为 1.14×107~4.10×107个/L和27~38NTU的水源水,硫酸铝的混凝效果最好,当其投加量为3.0mg/L时,其除藻率和去浊率可分别达到80%和89%,其他混凝剂混凝效果的优劣顺序依次为:聚合氯化铝铁、聚合硫酸铝、聚合硫酸铁;而对冬季的低温水源水,采用聚合硫酸铝或聚合氯化铝铁时,除藻和去浊效果较好. 相似文献
20.
在难于处理的低温低浊水中,投加高效助凝剂改性活化硅酸,克服了一般活化硅酸易成冻投加困难的缺点,延长其保存时间,增强助凝效果,保证出水水质,节省絮凝剂用量。 相似文献