首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amount of CO2 emissions from steelworks accounts for a great share of the total CO2 emissions from industry in China. Thus, reducing CO2 emissions from steelworks is urgent for China's environmental protection and sustainable development. This study aims at identifying factors that influence CO2 emissions from steelworks and proposing measures to reduce CO2 emissions. The life cycle inventory (LCI) of iron and steel products implies the relationship between the CO2 emissions of the steelworks and the input variables of the LCI. The Tornado Chart Tool is utilized to calculate the variation of CO2 emissions caused by the change of each input variables of LCI. Then, mean sensitivity of each input variable is calculated and the ranking criterion developed is used to identify the main factors influencing the integrated steelworks. Subsequently, measures for reducing CO2 emissions are proposed. The results indicate that the very important influencing factors of CO2 emissions in steelworks are the CO2 emission factor of Blast Furnace Gas (BFG), liquid steel unit consumption of continuous casting, continuous casting slab unit consumption of hot rolling and hot metal ratio of steel making. Consequently, many efficient measures for reducing CO2 emissions have been proposed, such as removing CO2 contained in BFG, decreasing the hot metal ratio of Basic Oxygen Furnace (BOF), recycling BFG, optimizing the products' structure, etc.  相似文献   

2.
中国钢材生命周期清单分析   总被引:20,自引:1,他引:20       下载免费PDF全文
采用生命周期清单分析方法分析了我国普通钢材生产过程中的能源消耗,物料消耗以及对环境的排放,研究表明我国钢铁生产生命周期过程中值得关注的环境问题有:能源消耗远高于发达国家平均水平,其主要存在于各相连工艺间及内部的运输过程水循环利用率较低,造成大量淡水资源浪费;废气排放主要是CO2和SOx,其主要来源于煤的燃烧和工艺过程,十分巨大的工业固体废弃物将造成严峻的局地环境问题。  相似文献   

3.
Representative Life-Cycle Inventories (LCIs) are essential for Life-Cycle Assessments (LCAs) quality and readiness. Because energy is such an important element of LCAs, appropriate LCIs on energy are crucial, and due to the prevalence of hydropower on Brazilian electricity mix, the frequently used LCIs are not representative of the Brazilian conditions. The present study developed a LCI of the Itaipu Hydropower Plant, the major hydropower plant in the world, responsible for producing 23.8% of Brazil's electricity consumption. Focused on the capital investments to construct and operate the dam, the LCI was designed to serve as a database for the LCAs of Brazilian hydroelectricity production. The life-cycle boundaries encompass the construction and operation of the dam, as well as the life-cycles of the most important material and energy consumptions (cement, steel, copper, diesel oil, lubricant oil), as well as construction site operation, emissions from reservoir flooding, material and workers transportation, and earthworks. As a result, besides the presented inventory, it was possible to determine the following processes, and respective environmental burdens as the most important life-cycle hotspots: reservoir filling (CO2 and CH4 emission; land use); steel life-cycle (water and energy consumption; CO, particulates, SOx and NOx emissions); cement life-cycle (water and energy consumption; CO2 and particulate emissions); and operation of civil construction machines (diesel consumption; NOx emissions). Compared with another hydropower studies, the LCI showed magnitude adequacy, with better results than small hydropower, which reveals a scale economy for material and energy exchanges in the case of Itaipu Power Plant.  相似文献   

4.
回顾了2007年我国废钢资源概况、废钢铁消耗情况、废钢进口量变化情况。2007年杭钢废钢收购价、华东地区主要钢厂废钢使用量及废钢收购价变化显示:废钢价格一、二季度稳步上移,三、四季度急速抬高,2008年春节前后创下历史最高纪录。2008年国内废钢仍然供不应求,价格也依然坚挺,不同时段价格行情将有不同表现。  相似文献   

5.
“双碳”目标下钢铁行业控煤降碳路线图   总被引:4,自引:3,他引:1  
薛英岚  张静  刘宇  陈瑜  孙健  蒋洪强  张伟  曹东 《环境科学》2022,43(10):4392-4400
钢铁行业的低碳绿色转型和率先煤耗和碳排放达峰,将对我国实现整体碳达峰目标和经济高质量发展作出重要贡献.基于碳排放-能源集成模型,对我国钢铁行业"双碳"目标下控煤降碳路径开展情景研究.结果表明,我国钢铁行业很有可能在"十四五"前期实现碳达峰,峰值16.4~16.7亿t (含过程和间接排放),作为主要消费能源的煤炭也将一起达峰,峰值4.6~4.7亿t标煤(含焦炭),在最激进的强化情景2035年煤炭消费和碳排放将降至2020年的38%和49%;粗钢产量很大程度上主导了钢铁行业的碳达峰进程,推进全废钢电炉短流程和加大废钢利用是碳达峰阶段最主要的控煤降碳措施.基于预测结果提出的钢铁行业控煤降碳路线图显示,需求侧方面,粗钢产量在不考虑"双碳"目标约束的情况下也会随工业化、城镇化水平逐渐达到发达国家水平而达到峰值并开始下降,新能源相关基础设施建设在实现碳中和期间带来的钢材需求增长体量相对有限;技术进步方面,推广长流程节能降碳技术应用是短期内性价比较高的措施,应重点推进高炉高效喷煤等技术的应用,同时增大高炉球团矿平均配比,远期碳捕集封存技术将具有较大的碳减排潜力;产能结构方面,推进全废钢电炉短流程是钢铁行业在碳达峰阶段的主要措施,到"十四五"末期电炉钢占比将提高至15%~20%,在碳中和目标下氢冶金是唯一具有超低碳排放潜力的生产工艺,在未来随着可再生能源或余热余能生产的绿氢供应量提高,氢冶金将成为与基于废钢的电炉短流程并重的钢铁生产工艺.  相似文献   

6.
The global demand for agricultural products, including food, is rapidly increasing due to population growth and shifts in consumption patterns. The required increase in agricultural production is predominantly to be achieved in countries with relatively low agricultural production levels at present. These are mainly developing countries and countries in transition, the so-called non-Annex I countries of the UNFCCC. However, intensification of agricultural production systems is currently closely linked to high emissions of greenhouse gases notably nitrous oxide (N2O) and methane (CH4). In this paper the relations between population growth, agricultural development and emissions of N2O and CH4 were assessed for 10 non-Annex I countries, viz. China, India, Vietnam, Brazil, Argentina, Mexico, Mongolia, Nigeria, Tanzania and South Africa. We combined FAO data on agricultural production levels, CENSUS data on population statistics and EDGAR data on N2O and CH4 emissions. The projected trends in agricultural production indicate that emissions of N2O and CH4 are expected to increase rapidly in the coming years and will level off from 2040 onwards. The results confirm the positive relation between population increase and increased emissions from agricultural activities for most countries. However, for some countries (South Africa, China and Mexico) this relation was weak or absent. Although numerous factors (e.g. changes in international trade) may have scattered the relation and we were unable to explain this decoupling, it suggests that population growth can be possible without additional emissions. The variation between the different countries and farming systems is however large and mitigation measures at farm-level should be tailored to the wide diversity in environmental conditions, regional customs and farming systems.  相似文献   

7.
This article compares the use of glulam beams at the new airport outside Oslo with an alternative solution in steel in order to (1) make an inventory of greenhouse gas (GHG) emissions and energy use over the life cycle of glulam and of steel, (2) calculate the avoided GHG emissions and the cost of the substitution, and (3) analyse which factors have the strongest influence on the results. Compared to previous analyses of substitution between steel and glulam related to greenhouse gas emissions, this article brings in three new methodological elements: combining traditional life-cycle analysis with economic costs, considering explicitly the emissions’ points in time, and using discounted global warming potential (DGWP).The total energy consumption in manufacturing of steel beams is two to three times higher and the use of fossil fuel 6–12 times higher than in the manufacturing of glulam beams. Manufacturing of steel in the most likely scenario gives five times higher GHG emissions compared to manufacturing of glulam beams. Waste handling of glulam can either be very favourable or unfavourable compared to steel depending on the glulam being landfilled or used for energy production. Other assumptions that substantially affect the results over the life cycle are carbon fixation on the forest land that is regenerated after harvesting, whether the steel production is scrap-based or ore-based, and which energy sources are used for producing the electricity used by the steel industry. The uncertainty in the inventory data for glulam do not influence the results much compared to changes in these main assumptions. The glulam construction cannot be more than 1–6% more expensive than steel before the price per ton avoided greenhouse gas emissions becomes high compared to the present Norwegian CO2-tax on gasoline. In the most likely scenario, and not including carbon fixation on forest land, 0.24–0.31 tons of CO2-equivalents per cubic metre input of sawn wood in glulam production is avoided by using glulam instead of steel, whereas this figure increases to 0.40–0.97 t/m3 if carbon fixation on forest land is included. Using DGWP does not influence the results of the analysis significantly.  相似文献   

8.
基于LEAP模型,构建了2015~2040年兰州市道路交通发展“零措施”的基准(BAU)情景以及低碳(LC)和强化低碳(ELC)这2个节能减排情景,模拟评估各项政策和措施下能源消耗情况和温室气体与大气污染物协同减排效果.结果表明,LC情景能源消耗和CO2排放将于2026年达峰,ELC情景能源消耗和CO2排放将于2020年达峰;两种情景下,NOx、 CO、 HC、 PM2.5和PM10等污染物排放量于2015~2017年间开始出现大幅下降,下降趋势于2023年前后逐渐减缓.结合措施可行性和减排成本,LC情景可作为兰州市道路交通碳达峰减排情景:到2040年能源消耗量、 CO2、 NOx、 CO、 HC、 PM2.5和PM10排放相对于BAU情景的削减率分别达到-24.17%、-26.57%、-55.38%、-65.91%、-72.87%、-76.66%和-77.18%.兰州市道路交通当前应以公共...  相似文献   

9.
An increasing divergence regarding fuel consumption(and/or CO2 emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases(GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Lightduty Vehicle Test Cycle for Passenger cars(CL...  相似文献   

10.
为探讨乡村旅游发展对农户生计转型及能源消费模式产生的影响,论文借鉴可持续生计理论,以陕南金丝峡乡村旅游地为例,通过入户调查与访谈,构建能源消费-生计多样性模型对农户分类,基于用能多样性矩阵与效益评估法,分析不同生计类型农户用能结构及其综合效益,继而依据灰色关联分析,识别影响农户能源消费的主要生计资本因子,并总结农户能源消费模式转变的驱动机制.结果表明:① 参与旅游经营与不参与旅游经营的两大类农户中,农户用能多样性水平随生计多样性水平的提高而上升;② 与非旅游经营户相比,旅游经营户商品能源消费大幅增加,新型能源迅速推广,传统能源消费有所降低,能源消费模式向优质化和商品化发展;③ 不同类型农户用能综合效益差异明显,旅游经营户用能综合效益(16.96 元/kgce)明显大于非旅游经营户(13.53 元/kgce),表明旅游经营户从能源消费中获益更多;④ 促使农户能源消费模式变化的主要影响因素是物质、人力和金融三大生计资本.乡村旅游业发展带来了农户生计资本与策略的变化,并成为农户能源消费模式转变的重要驱动力,最后为进一步改善环境政策和优化能源利用,提出了相应的对策和建议.  相似文献   

11.
Our interest is in electricity demand and the temperature aspects of climate change. Electricity consumption is of interest both from the perspectives of adaptation to climate change and emission reductions. We study the relationship between European electricity consumption and outdoor temperature and other variables, using a panel data set of 31 countries. Apart from providing a rare quantitative window into adaptation, the study contributes demand system parameters with respect to price and income. The results suggest that weather has a statistically significant effect on electricity demand, with effects that are of plausible magnitude. In a simulation of climate change for the next 100 years—other factors held constant—we find that the demand for heating will decrease in Northern Europe while the demand for cooling will increase in Southern Europe. In countries like Cyprus, Greece, Italy, Malta, Spain, and Turkey the net effect of increased cooling outweighs decreased heating consumption whereas in most of Europe the opposite holds. The largest estimated partial impact is 20%, which predicted increase in adaptive consumption for Turkey and decrease in adaptive consumption for Latvia. Estimated elasticities with respect to income and price are 0.8 and minus 0.2 respectively: plausible in the light of the literature. As a discussion item, we add that electricity consumption changes due to temperature change likely will be small compared to those due to other factors, such as changes in income, demography and technology. The study does not include effects of climate change other than through electricity consumption.  相似文献   

12.
An investigation on minimum quantity lubrication (MQL) grinding was carried out with the scope of documenting the process efficiency of oil-based nanolubricants. The nanolubricants were composed of MoS2 nanoparticles (<100 nm) over coated with organic agents, dispersed in two different base oils—mineral oil (paraffin) and vegetable oil (soybean). Surface grinding tests were carried out on cast iron and EN 24 steel under different lubrication conditions—MQL using nanolubricants (varying compositional chemistry and concentration of nanoparticles), pure base oils (without nanoparticles) and base oils containing MoS2 microparticles (3–5 μm), and flood grinding using water-based coolant. Specific energy, friction coefficient in grinding and G-ratio were used as measurands for determining the process efficiency. Results show that MQL grinding with nanolubricants increases the process efficiency by reducing energy consumption, frictional losses at the wheel–workpiece interface and tool wear. The process efficiency is also found to increase with increasing nanoparticle concentration. Soybean and paraffin based-nanolubricant performed best for steel and cast iron, respectively, showing a possible functional relationship between the compositional chemistry of nanolubricant and the workpiece material, which will be the goal of future work.  相似文献   

13.
钢铁工业排放颗粒物中碳组分的特征   总被引:3,自引:3,他引:0  
张进生  吴建会  马咸  冯银厂 《环境科学》2017,38(8):3102-3109
为探究钢铁工业排放颗粒物中碳组分的特征,使用荷电低压颗粒物撞击器(ELPI)采样,采集到3组不同载荷和除污设施的烧结炉和1组炼铁高炉排放的颗粒物样品,利用热-光反射法,分析颗粒物中的有机碳(OC)和元素碳(EC)以及按温度划分的7种碳组分物质.结果表明,烧结工艺排放颗粒物中OC的质量分数高于炼铁工艺,OC在PM_(10)和PM_(2.5)质量分数分别是(5.3±2.3)%和(7.1±3.0)%,说明OC易在细粒径段颗粒富集,炼铁工艺排放颗粒物中OC在PM_(10)和PM_(2.5)质量分数分别是2.5%和2.0%;4组样品的7种碳组分相对比例相似,OC2和OC3在7种碳组分中质量分数最高,EC1、EC2、EC3的质量分数依次递减,OC1的质量分数可能与锅炉规模和脱硫设施有关;另外,烧结工艺排放各粒径段的颗粒物中OC和EC表现出较高的相关性,一次排放的PM_(2.5)中的OC/EC为4.7±0.7,远高于受体中估算二次碳组分的指标值.钢铁工业排放颗粒物中碳质组分的深入分析,可以为受体碳质气溶胶的来源解析提供基础数据,也有助于钢铁工业后续的除污管理.  相似文献   

14.
《Journal of Cleaner Production》2005,13(10-11):1071-1081
The healthcare sector constitutes a major part of the economy of developed nations and consumes significant quantities of consumables. The Region Scania commissioned IIIEE, Lund University, to develop a management tool for strategic decision-making in order to reduce the climate impact indirectly derived from material consumption. The tool was streamlined to fit operational conditions at Region Scania and used to study four consumables to obtain a figure on their emissions of CO2 from a life cycle perspective. Strategies to reduce the impact on climate derived from consumption were studied and recommended to Region Scania. It was concluded that considerable reductions of the impact on climate change could be achieved by implementing good housekeeping in working routines and by addressing green purchasing to prevent inefficient consumption patterns.  相似文献   

15.
长三角区域非道路移动机械排放清单及预测   总被引:6,自引:5,他引:1  
黄成  安静宇  鲁君 《环境科学》2018,39(9):3965-3975
基于长三角典型城市非道路移动机械实地调查成果,结合长三角各城市非道路移动机械相关指标现状及变化趋势,建立了长三角三省一市非道路移动机械大气污染源排放清单,并开展了2005~2025年区域非道路移动机械保有量、燃油消费量及污染物排放量预测.2014年长三角非道路移动机械总量约为8.23×106台,柴油消费量约9.95×106t,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别为5.5×10~3、4.9×10~5、7.6×10~5、1.1×10~5、2.9×10~4和2.7×10~4t,农用机械占长三角机械总量的93%,CO和VOCs排放贡献分别为88%和77%;建筑及市政工程机械的NO_x和PM_(2.5)排放贡献较为突出,分别占49%和35%.长三角中部和北部城市机械排放贡献相对突出.2005~2014年间,长三角地区非道路移动机械保有量、油耗及排放增幅均相对较快,预计到2020和2025年,区域非道路移动机械总量增速明显放缓,柴油消费量分别比2014年增加2%和8%.到2020年,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别比2014年下降97%、10%、3%、10%、11%和11%;到2025年分别下降97%、16%、3%、15%、21%和21%.预计未来长三角区域非道路移动机械排放将呈现逐年下降趋势,但相比机动车降幅仍相对较小,其排放贡献将日益突出,加快老旧机械淘汰并进一步提升机械排放标准对削减非道路移动机械排放总量具有十分重要的意义.  相似文献   

16.
矿产资源需求拐点理论与峰值预测   总被引:5,自引:0,他引:5  
矿产资源的有限性同需求快速增长之间的矛盾日趋突出。未来我国经济发展究竟需要多少矿产资源,何时到达矿产资源需求高峰,这些问题是国家制定矿产资源战略的基础。研究提出矿产资源消耗双拐点理论:一是矿产资源消耗强度达到峰值时对应的拐点,矿产资源由粗放利用向集约利用转变;二是矿产资源消费水平达到峰值时对应的拐点,矿产资源消费由增加向减少转变。经过逻辑推导,并以先期工业化的美国为例,追溯矿产资源消耗与经济社会发展变迁的历史轨迹来佐证了这一理论。通过比较研究,定性地判断我国未来矿产资源消耗趋势,未来5~15 a我国矿产资源需求空间仍然很大。选择BP神经网络和岭回归预测方法,综合考虑经济发展、 人口变化和科技进步等因素,基于Matlab软件实现了对我国矿产资源需求的拐点与峰值预测。预测结果显示:能源需求拐点将在"十四五"时期出现,峰值为45×108~50×108 t标准煤;钢铁需求拐点将在"十三五"时期出现,峰值为8×108 t左右;铜需求拐点将在"十三五"时期出现,峰值为900×104 t左右;铝需求拐点将在"十二五"时期出现,峰值为1 600×104~1 700×104 t左右。  相似文献   

17.
In this paper we examine the trends of nitrous oxide (N2O) emissions of the Spanish agricultural sector related to national production and consumption in the 1961–2009 period. The comparison between production- and consumption-based emissions at the national level provides a complete overview of the actual impact resulting from the dietary choices of a given country and allows the evaluation of potential emission leakages. On average, 1.5 % of the new reactive nitrogen that enters Spain every year is emitted as N2O. Production- and consumption-based emissions have both significantly increased in the period studied and nowadays consumption-based emissions are 45 % higher than production-based emissions. A large proportion of the net N2O emissions associated with imported agricultural goods comes from countries that are not committers for the United Nations Framework Convention on Climate Change Kyoto Protocol Annex I. An increase in feed consumption is the main driver of the changes observed, leading to a remarkable emission leakage in the Spanish agricultural sector. The complementary approach used here is essential to achieve an effective mitigation of Spanish greenhouse gas emissions.  相似文献   

18.
The nonferrous metal industry (NMI) of China consumes large amounts of energy and associated emissions of carbon dioxide (CO 2) are very high. Actions to reduce CO 2 emissions and energy consumption are warranted. This study aims to analyze current China NMI trends of CO 2 emissions and energy consumption including the underlying regional driver characteristics. We analyze the changes of CO 2 emissions in the NMI based on the Logarithmic Mean Divisia Index (LMDI) method from 2000 to 2011. Then, a classification system is used to study the regional differences in emission changes from the NMI. The results show that the emissions of the Chinese NMI increased rapidly at an average annual growth rate of 31 million metric tons. The economic scale and energy intensity are the main driving factors responsible for the change in the emissions, while carbon emission coefficients make only a small contribution toward decreasing the emissions, and the energy structure has a volatile effect. Emissions and energy intensity of 29 China provinces were divided into five categories. The change in the trend of each region is indicated in this paper. Hebei is one of the provinces that achieved the best performance, and Chongqing achieved the worst performance among all of the regions. The analysis suggests that the main emphasis of CO 2 emission mitigation should be focused on controlling the economic scale and improving the energy intensity. Developing the use of clean energy technologies and policies in both the NMI and power industries is important.  相似文献   

19.
This paper presents a global database of annual NOx and SOx emissions from fossil fuel combustion at a 1° resolution. The annual emissions estimates were based on fuel consumption for individual countries and are distributed according to human population within each country. There is a large spatial variability in the distribution of these emissions with over 90% of each gas being emitted in the Northern Hemisphere. It is expected that the estimates of NOx and SOx emissions will be useful for global and regional chemical transport simulations. The database is available from the author for this purpose.  相似文献   

20.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号