首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Distributed generation in micro cogeneration systems, e.g. reciprocating or Stirling engines and fuel cells, is of increasing interest in the energy market. This paper investigates environmental impacts of micro cogeneration by carrying out a detailed life cycle assessment and an analysis of local air quality impacts of micro cogeneration systems.Most micro cogeneration systems are superior, as far as the reduction of GHG emissions is concerned, not only to average electricity and heat supply, but also to state-of-the art separate production of electricity in gas power plants and heat in condensing boilers. The GHG advantages of micro cogeneration plants are comparable to district heating with CHP. Under the assumption that gas condensing boilers are the competing heat-supply technology, all technologies are within a very narrow range. Looking at the GHG reduction potential on the level of a supply object (e.g. a single-family house) by modeling the operation with a CHP optimization tool, the achievable mitigation potential is somewhat lower, because the micro cogeneration systems do not supply the whole energy demand. Here, fuel cells offer the advantage of a higher power-to-heat ratio.Environmental impacts other than those related to climate and resource protection relate more specifically to technology. In addition to investigating the emissions side, analysis of the air quality situation of a residential area supplied by reciprocating engines was carried out. The analysis shows that for the selected conditions, the additional emission of NOx due to the engines do not create severe additional environmental impacts.  相似文献   

2.
The paper industry is responsible for a considerable amount of greenhouse gas (GHG) emissions mainly due to its intensive energy requirements. The production of heat and power streams in a cogeneration system, i.e., a combined heat and power (CHP) plant, releases considerable amounts of GHG emissions into the atmosphere. Such emissions are already subjected to legislation globally. The amount of GHG emissions is usually calculated from the product of the total amount of energy activity multiplied by an emission factor. However, each energy output stream should get a share of emissions responsibility. This fact could assist in assigning weights to the emissions generated for power and thermal purposes in a combined heat and power plant. However, developing a suitable method of allocating emissions in a cogeneration system is still a concern and a subject research for scientists, companies and policy makers. This paper exposes and evaluates different published allocation methods and applies them to a real case of a combined heat and power plant integrated in a paper mill and proposes a new allocation method.  相似文献   

3.
The replacement of fossil fuels by biofuels could be an important means of reducing net carbon dioxide (CO2) emission. An estimation of the CO2 mitigation efficiency of biofuel systems depends on the method and assumptions used. Here, different parameters and methods are discussed for comparing fossil-fuel- and biofuel-based systems. Three parameters are suggested: the monetary cost, the primary energy cost and the biofuel cost of CO2 mitigation. They are defined as the difference in monetary expenditure, primary energy use and biofuel use between the compared systems, divided by the difference in net CO2 emission between the systems. Cogeneration and separate production of electricity and heat is then compared using these parameters and the methods of multi-functional products or subtraction. In both methods, either electricity or heat is regarded as the main product and the other is regarded as a by-product. The multi-functional method is preferable due to its transparency as both the main product and the by-product are part of the functional unit. Using heat as the main product illustrates the typical situation that the heat demand limits the use of cogeneration. When comparing systems the output from them should not differ. If the by-product is not fully, cogenerated part of the by-product has to be produced separately. A logical choice for producing this part of the by-product is to use a similar fuel and technology as used for cogeneration.  相似文献   

4.
An analysis of the impacts on Mexican energy demand and associated carbon dioxide (CO2) emissions in the year 2005 due to efficient lighting in the commercial and residential sectors and cogeneration in the industrial sector is presented. Estimation of CO2 abatement costs and an incremental cost curve for CO2 mitigation options are considered. These technologies are cost effective opportunities, and together are projected to reduce CO2 emissions in 2005 by nearly 13 percent. Implementation of efficient lighting is already part of the demand side management (DSM) programs of the Mexican state-owned utility. However, there are important barriers that may hinder the implementation of large scale cogeneration plants.  相似文献   

5.
An analysis of the impacts on Mexican energy demand and associated carbon dioxide (CO2) emissions in the year 2005 due to efficient lighting in the commercial and residential sectors and cogeneration in the industrial sector is presented. Estimation of CO2 abatement costs and an incremental cost curve for CO2 mitigation options are considered. These technologies are cost effective opportunities, and together are projected to reduce CO2 emissions in 2005 by nearly 13 percent. Implementation of efficient lighting is already part of the demand side management (DSM) programs of the Mexican state-owned utility. However, there are important barriers that may hinder the implementation of large scale cogeneration plants.  相似文献   

6.
从生命周期的角度出发,以1m2房屋每日的供热量为基准,对散煤采暖,电锅炉,低温空气源热泵,燃气壁挂炉,热电联产集中供热,燃气锅炉集中供热,洁净型煤等7种采暖方式的生命周期污染物排放和能源利用效率进行对比分析.结果发现:相比散煤取暖,清洁采暖方式可有效地降低大气污染物排放量,尤其是PM10和PM2.5.其中,以天然气为热源的燃气锅炉集中供热和燃气壁挂炉最为清洁,可减排SO2和NOx 85%左右,减排PM10和PM2.5 99%左右;洁净型煤和电锅炉的减排效率相对较低.低温空气源热泵和热电联产集中供热对能源利用效率最高,可达到80%以上,而电锅炉仅30%左右.此外,改善建筑围护结构保温性能可有效降低农村地区采暖的大气污染物排放.  相似文献   

7.
为了优化水泥碳排放因子的测算方法,论文基于生料碳酸盐法以及工艺/燃料排放(新型干法窑)、无机碳/有机碳排放(立窑)的碳排放分类对熟料和水泥碳排放因子进行了分析和测算。结果表明:基于抽样调查样品的测试数据,新型干法窑的工艺碳排放因子约为520.00 kg CO_2/tcl,燃料碳排放因子约为288.06 kg CO_2/tcl,熟料碳排放因子约为808.06 kg CO_2/tcl,立窑的无机碳排放因子约为504.18 kg CO_2/tcl,有机碳排放因子约为343.67 kg CO_2/tcl,熟料碳排放因子约为847.85 kg CO_2/tcl;由于新型干法窑和余热发电等技术的普及以及熟料水泥比降低等因素,中国水泥碳排放因子有逐年降低的趋势,从2001年到2012年,水泥碳排放因子从767.13 kg CO_2/tce降到550.80 kg CO_2/tce;水泥碳排放构成中的工艺排放、燃料排放和电力消耗间接排放约各占58.57%、29.79%和11.64%。  相似文献   

8.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

9.
实施建筑领域CO2排放控制是推动我国2030年前实现碳排放达峰的关键举措. 2020年我国建筑领域运行阶段CO2排放量为21.7×108 t,约占全国能源活动碳排放量的20%,其中直接排放6.9×108 t,间接排放14.8×108 t. 随着城镇化发展水平和居民生活消费水平的不断提升,建筑领域CO2排放仍呈刚性增长态势. 为明确建筑领域CO2排放达峰路径,综合考虑建筑领域发展现状和用能情况,以建筑运行中供暖、炊事等活动所需一次能源(煤炭、石油和天然气)消耗直接排放以及热电联产供暖、空调、照明、电梯、电器等外购热力和电力间接排放为核算范围,在预测不同阶段建筑发展规模、建筑能源消费、用能结构的基础上,分析未来碳排放变化趋势和达峰时间,提出达峰路径和重要政策举措. 结果表明:①2010—2020年,我国建筑领域CO2排放量从13.2×108 t增至21.7×108 t,其中直接排放已于2017年达峰,间接排放仍在持续增长. ②从建筑规模和节能降碳措施等角度分情景开展建筑领域碳排放达峰路径研究,预测建筑领域CO2排放将在2029—2030年左右达峰,峰值排放量为28.1×108~29.2×108 t,达峰后有2~3年的平台期. ③低碳清洁取暖、可再生能源应用、建筑节能改造和合理控制建筑规模4项措施是建筑领域实现碳排放达峰的重要举措,4项措施的减排贡献率分别达到40.7%、27.1%、17.7%和14.5%. 研究显示,2030年前,发展建筑可再生能源、强化建筑节能、合力控制建筑规模是建筑领域降碳的核心举措,而推动低碳清洁取暖是实现我国建筑领域降碳最主要的控制途径.   相似文献   

10.
The cement industry is characterisedby intensive energy consumption throughout itsproduction stages which, together with the calcinationof its raw materials, accounts for significant amountsof greenhouse gases (GHG) emissions. In 1996, theBrazilian cement industry consumed 4.3% of the energyrequired by the industrial sector, contributing over22 Tg (Teragrams) of CO2. The prospects forgrowth in this sector in Brazil indicate risingdemands for fossil fuels, with a consequent upsurge inemissions. This article aims to present the prospectsfor energy conservation in the Brazilian cementindustry through to 2015, taking into account: theintroduction of new production technologies in thissector, the use of waste and low-grade fuels,cogeneration, the use of cementitious materials, andother measures, based on a technical and economicenergy demand simulation model. In all scenarios, wefound that is possible to significantly reduce energyconsumption and CO2 emissions for BrazilianCement Industry. Under the market potential scenarios,energy savings vary between 1562.0 to 1900.6 PJ(PetaJoules), with use of cementitious materialsaccounting for around 31% of this total. Fortechnical potential scenarios, use of cementitiousmaterials could represent 51% to 52% of totalachieved energy savings, between 2374.6 to 2803.4 PJ.  相似文献   

11.
In Finland the percentage of biomass fuels of total primary energy supply is relatively high, close to 17%. The share of biomass in the total electricity generation is as much as 10%. This high share in Finland is mainly due to the cogeneration of electricity and heat within forest industry using biomass-based by-products and wastes as fuels. Forest industry is also a large user of fossil-based energy. About 28% of total primary energy consumption in Finland takes place in forest industry, causing about 16% of the total fossil carbon dioxide emissions.The Kyoto protocol limits the fossil CO2 and other greenhouse gas emissions and provides some incentives to the Finnish forest sector. There are trade-offs among the raw-material, energy and carbon sink uses of the forests. Fossil emissions can be reduced e.g. by using more wood and producing chemical pulp instead of mechanical one. According to the calculation rules of the Kyoto protocol Finnish forests in 2008–2012 are estimated to form a carbon source of 0.36 Tg C a−1 due to land use changes. Factually the forest biomass will still be a net carbon sink between 3.5 and 8.8 Tg C a−1. Because the carbon sinks of existing forests are not counted in the protocol, there is an incentive to increase wood use in those and to decrease the real net carbon sink. Also the criteria for sustainable forestry could still simultaneously be met.  相似文献   

12.
陈春赐  吕永龙  贺桂珍 《环境科学》2022,43(11):4905-4913
为实现碳达峰碳中和目标,中国正致力于推动能源低碳化转型,这促进能源由煤炭向油气资源的转变.因此,中国石油和天然气系统(油气系统)的甲烷(CH4)排放日益受到关注.逸散排放包括设备泄漏、排空和火炬燃烧,涉及油气资源的开发、生产、运输、储存和分配等过程.但目前油气系统CH4逸散排放缺乏统一的核算方法,逸散排放量亦未被纳入国家温室气体清单统计之中.基于相关方法,评估了1980~2020年中国油气系统的CH4逸散排放.结果表明,油气系统的CH4逸散排放随着油气资源的生产和消费增长而快速增加,由1980年不足60万t增长至2020年的超过260万t.石油系统和天然气系统在2020年的CH4逸散排放分别达到约60万t和200万t,是1980年的1.38倍和16.6倍.油气系统的CH4逸散主要源于天然气生产、石油生产、天然气分配、天然气运输和储存,分别占总排放的41%、20%、18%和13%.天然气管道是主要的逸散设施.相比于常规油气资源开发,非常规油气资源开发的排放强度更高.研究完善了CH4逸散排放清单,可为CH4减排提供重要科学数据支持.  相似文献   

13.
Ozone-forming potentials of emissions from various alternative-fueled vehicles and gasoline-fueled vehicles have been evaluated using currently available data on the composition of organic emissions from such vehicles. Ozone-forming potentials are computed using three different methods: (1) a relative reactivity method; (2) an incremental reactivity method; and (3) a direct method using a photochemical trajectory model and detailed organic composition data for vehicular emissions. The three different methods give consistent results when the compositions of non-methane hydrocarbon (NMHC) emissions are similar. In those cases, the simplified relative reactivity or incremental reactivity methods are useful. However, when the compositions of NMHC emissions are not similar, a method which considers the detailed speciated organic emissions data, such as the direct method, is needed. More reliable, statistically significant data for organic composition of emissions from alternative-fueled vehicles as well as gasoline-fueled vehicles are needed to improve the estimates of ozone-forming potentials.  相似文献   

14.
集中供热是事关国计民生的刚性需求,是能源消费的重要部门,是大气污染物减排的重要着力点.开展面向减污降碳的集中供热结构调整路径分析对我国实现“双碳”目标、建设“美丽中国”具有重要意义.通过构建2020年集中供热碳污耦合排放清单,摸清碳污排放现状;考虑热电联产供热范围以及生物质资源分布,分析拆炉并网、煤改气以及煤改生物质等措施的局限性及碳污减排潜力;结合情景分析,识别碳污减排关键路径,为开展集中供热减污降碳相关工作提供参考.结果表明:(1)热电联产、燃煤工业锅炉分别是集中供热部门CO2和大气污染物的主要排放源,东北地区及内蒙古自治区是该部门碳污排放的热点区域.燃煤工业锅炉污染控制水平及热效率较低是开展集中供热部门减污降碳的重要切入点.(2)热电联产供热管网难以全面覆盖35 t/h以下燃煤工业锅炉,超40%的小容量燃煤工业锅炉需要采用其他方式进行综合改造.(3)生物质能源利用潜力空间差异较大,制约了供热部门低碳化,如华北及东北地区难以满足本区域燃煤工业锅炉生物质改造的能源需求.(4)加强低碳情景下,2060年集中供热部门SO2、NOx  相似文献   

15.
Industrial symbiosis (IS) studies the physical flows of materials and energy in local industrial systems using a systems approach. In this study the total fuel and energy use, and greenhouse gas emissions are calculated for an ‘industrial park’ operating in the same manner as an IS. Moreover the relevance of industrial symbiosis, particularly one centred on pulp and paper manufacturing, in moving towards more sustainable fuel consumption and reduced greenhouse gas emissions is discussed. The system is compared to hypothetical stand-alone production. Moreover, possibilities to reduce the energy use and total greenhouse gas emissions of the park are identified.  相似文献   

16.
文章以某燃气热电项目大气影响预测为例展开建设项目工程实例研究,展示了大气预测情景模式、预测网格点的设置和相应地形和气象等参数的选取,从科学性、工程性、可操作性等多方面考虑,提出了在实际预测工作中应注意的问题以及参数选取的技巧和方法。为大气影响评价的研究和实践工作提供参考和借鉴作用,为今后深入开展大气影响预测评价工作提供思路和启迪。  相似文献   

17.
Traditionally, treatment of solid waste has been given limited attention in connection with life-cycle assessments (LCAs). Often, only the amounts of solid wastes have been noted. This is unsatisfactory since treatment of solid waste, e.g. by landfilling or incineration, is an operation, requiring inputs and producing outputs, which should be described in the inventory of an LCA, in parallel to other operations. However, there are difficulties in describing emissions from solid waste treatments and there is a need for development of such methods. In this paper an approach for describing emissions from incineration and landfilling is outlined. Methodological questions concerning the time-frame and allocation principles are discussed. Methods for estimating potential emissions from landfilling of municipal solid waste and industrial wastes are suggested. The methods are used for calculating potential emissions from landfilling of some typical wastes. These emissions are compared with the emissions from other stages in the life cycle for some materials and wastes. it is shown that the potential emissions from landfilling are, for some products, of importance for the final results. Hence, if emissions from landfilling are neglected, or underestimated, results and conclusions in an LCA may be misleading.  相似文献   

18.
Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.  相似文献   

19.
More and more countries are incorporating the instrument of emissions trading into their national climate policies. This emerging mosaic of emissions trading schemes (ETS) raises the question of whether they should be linked with each other. From an economic point of view, linking of domestic schemes is supposed to increase the economic efficiency of carbon markets. In addition, linking is also expected by some to yield substantial political benefits in terms of the evolution of the UNFCCC/Kyoto regime. However, these optimistic prospects are based on a best-case scenario where all major countries establish environmentally effective emissions trading systems and then link them with each other. Real-life politics might develop rather differently. This paper therefore examines to what extent the current status of emissions trading in industrialised countries provides a basis for reinforcing and moving forward the international climate regime through linking domestic ETS. After comparing emerging emissions trading schemes from an institutional perspective, it emerges that not only emissions trading is at a very early stage in most countries, in addition the emerging systems are probably going to be designed very differently from the EU ETS. While for some design features such as the coverage design differences do not matter, there are some areas where the plans in many non-EU countries look crucially different from the EU system. The outlook for a linked international ETS is therefore currently still very uncertain. Given this state of affairs, the EU should pro-actively engage with the non-EU countries to try to harmonise their developing national emissions trading schemes with the EU ETS, widely disseminate the lessons it has learned from the EU ETS, strongly make the case for environmental integrity and at the same time make clear that systems that want to link to the EU ETS will need to meet certain quality criteria.
Ralf SchüleEmail:
  相似文献   

20.
According to the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol under it, industrial countries have to estimate their greenhouse gas emissions annually, and assess the uncertainties in these estimates. In Finland, agricultural methane (CH4) and nitrous oxide (N2O) emissions represent 7% of anthropogenic greenhouse gas emissions, and globally the share is much higher. Agriculture is one of the most uncertain emission categories (representing over 20% of greenhouse gas inventory uncertainty in Finland), due to both high natural variability of the emission sources and poor knowledge of the emission-generating processes. In this paper, we present an uncertainty estimate of agricultural CH4 and N2O emissions from Finland in 2002. Uncertainties were estimated based on measurement data, literature and expert judgement, and total uncertainty in agriculture was calculated using Monte Carlo simulation. According to the calculations, agricultural CH4 and N2O emissions from Finland were 3.7 to 7.8 Tg carbon dioxide (CO2) equivalents, 5.4 Tg being the mean value.Estimates of CH4 emissions are more reliable than those of N2O. N2O from agricultural soils was the most uncertain emission category, and the uncertainty was not reduced by using available national measurement data of N2O fluxes. Sensitivity study revealed that the uncertainty in total agricultural inventory could be 7% points lower, if more accurate emission estimation methods were used, including 1) improved data collection in area estimates of organic soils, 2) climate-specific methods for N2O from agricultural soils as already presented in literature, and 3) more detailed CH4 estimation methods for enteric fermentation which can be achieved by investigating national circumstances and digestible systems of animals in more detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号