首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
化学氧化技术处理硝基苯生产废水的试验   总被引:1,自引:1,他引:0  
硝基苯和苯胺生产中产生的废水含有的大量硝基苯、苯胺类物质及其衍生物。这些物质的生物可降解性较差,并对生物具有毒性。对含硝基苯和苯胺的废水采用ClO2催化氧化技术进行处理后,硝基苯和苯胺的去除率均可达到95%以上,COD的去除率可以达到90%;出水中硝基苯、苯胺和COD的浓度分别降到2.5mg/L、1.5mg/L和100mg/L以下。  相似文献   

2.
生物膜电极法降解硝基苯的研究   总被引:1,自引:1,他引:0  
文章研究了生物膜电极对硝基苯的降解。初始浓度43mg/L时,培养驯化后的生物膜电极对硝基苯的24h去除率可达94.52%。继续提高硝基苯初始浓度,实验得到的峰值降解能力为296mg/dm.2d。动力学特征分析表明,降解为底物抑制的生物催化。质谱检测了硝基苯降解中间产物,并推测其开环途径为还原过程,阴极还原性对开环历程起到关键性影响。  相似文献   

3.
利用白腐菌处理含硝基苯类化工废水的研究   总被引:19,自引:1,他引:18  
采用正交实验法,通过生化反应动力学分析,利用白腐菌对硝基苯类化工废水进行了好氧生化降解实验研究.在常温(25 ℃),pH值为7,进水CODCr为2 000 mg/L,硝基苯类进水质量浓度为100 mg/L,停留时间为60 h的条件下,CODCr降解率达到99%.对白腐菌降解硝基苯类废水的动力学分析,结果证明了其生化反应为一级动力学反应.   相似文献   

4.
活性炭固定耐冷菌对硝基苯的降解特性   总被引:5,自引:1,他引:4       下载免费PDF全文
研究了用颗粒活性炭固定耐冷菌(Pseudomonas putida)对硝基苯降解的强化作用.结果表明,细菌被活性炭固定后,对硝基苯的降解能力提高.降解浓度为200mg/L的硝基苯所用时间由固定前的34h左右缩短为29.5h.浓度为400mg/L的硝基苯,对细菌有强烈抑制作用,细菌无法生长,但固定化细菌可直接降解浓度为400mg/L的硝基苯,且降解浓度为600mg/L的硝基苯只需46h.固定化细菌可连续4次降解浓度为400mg/L以下的硝基苯,但随着次数增多,降解速率减慢.用SEM扫描200mg/L硝基苯降解末期的生物活性炭的结果表明,Pseudomonas putida菌是降解过程中唯一的细菌.  相似文献   

5.
DSA类电极催化降解硝基苯及其动力学研究   总被引:9,自引:0,他引:9  
用新兴的电化学催化系统,采用特殊工艺自制的DSA类电有作为阳极,对模拟硝基苯废水进行降解处理。结果表明,最佳试验条件为:电流密度15mA/cm^21、Na2So4浓度5g/L、pH以中性和碱性较好。在适合的条件下。硝基苯废水CODcr去除率可达到90%以上,DSA类电极能有效地催化降解硝基苯。对试验结果进行的非线性最小二乘法分析表明,硝基苯在电化学催化系统中的降解过程符合一级反应模型,在硝基苯质量浓度200mg/L、pH11.0、Na2SO4浓度10g/L、电流密度15mA/cm62的试验条件下,CODcr去除速度常数为0.0395min^-1。  相似文献   

6.
采用固定化高效微生物滤池处理高含盐苯胺、硝基苯废水,经两年多时间的运行,在废水中氯离子浓度最高达到50864 mg/L,平均值18119 mg/L的条件下,进水COD≤2694 mg/L、苯胺≤559 mg/L、硝基苯≤1 46mg/L,水力停留时间75小时,载体接触时间41.5小时;出水平均值分别为COD45 mg/L、苯胺0.37 mg/L、硝基苯0.085mg/L;平均去除率COD 95.4%、苯胺99.8%、硝基苯99.8%;达到国家<污水综合排放标准>(GB8978-1996)一级标准的合格率COD94.6%、苯胺99%、硝基笨98.4%.系统运行稳定.  相似文献   

7.
上流式厌氧污泥床反应器处理3-硝基酚废水研究   总被引:2,自引:1,他引:1  
刘维岗  佘宗莲  于建伟  高孟春 《环境科学》2006,27(11):2206-2211
利用实验室规模的UASB反应器,研究了颗粒污泥驯化前后的特性,3-硝基酚(3-NP)的降解效果和UASB处理3-NP废水的工艺参数.结果表明,驯化过程中颗粒污泥很快适应3-NP废水;扫描电镜观察显示,颗粒污泥表面丝状菌占优势.在3-NP废水厌氧降解性实验中,保持HRT和进水COD浓度不变,分别为26 h和2 500 mg/L左右,当3-NP浓度由20 mg/L逐渐提高到250 mg/L时,COD去除率由95.2%下降到85.1%;3-NP的去除率保持在99%以上;3-AP是3-NP降解过程中的主要中间产物,3-NP转化为3-AP的转化率由58.7%上升到111.9%;产气量变化较小,甲烷占总产气量百分数最小为65%,最大为74%.  相似文献   

8.
以曝气生物滤池为核心工艺研究优势菌强化印染废水脱色及污染物降解。从印染废水处理厂活性污泥中分离得到染料脱色菌15株、苯胺降解菌2株、印染助剂降解菌10株。试验进水平均色度为400倍,平均COD浓度为1295mg/L,厌氧段以组合填料为载体,水力停留时间10h,菌种投加量为0.2%;好氧段以煤渣填料为载体,水力停留时间25h,菌种投加量为0.1%。结果表明:系统连续进出水一周以后出水COD浓度稳定在130110mg/L,平均浓度为118 mg/L,去除率90.9%;出水色度在40倍左右,去除率90%;出水苯胺浓度低于4mg/L。  相似文献   

9.
非均相催化臭氧化技术能够快速、有效地去除污水中较高浓度难降解有机污染物,比较适用于处理突发环境污染事故。通过对O3/Mn-Fe(3∶1)/载体硅胶在不同试验条件下处理高浓度硝基苯废水进行了动态试验研究,并考察了连续处理实际有机废水效果。试验结果表明:硝基苯废水为2 L、进水流速为0.2 m/s、催化剂投加量为20 mg/l、引发剂H2O2投加量为20 ml时,连续运行1小时后,硝基苯的去除率达到75.4%;反应器连续运行30天,出水中的硝基苯去除率稳定在65%左右。  相似文献   

10.
通过静态小瓶试验,研究了木薯废水的厌氧降解特性,并对其厌氧降解动力学进行分析;同时利用傅里叶红外光谱(FTIR)与三维荧光光谱(EEM)对颗粒污泥的胞外聚合物(EPS)进行分析。结果表明,当木薯废水COD浓度由6 000 mg/L增大到10 000 mg/L时,COD去除率由81.23%下降到71.67%,而VFA由5.07 mmol/L增大到21.33 mmol/L。木薯废水的厌氧降解动力学模型符合一级反应动力学。当木薯废水COD浓度由6 000 mg/L增大到10 000 mg/L时,颗粒污泥EPS的红外光谱中出现了N—H的伸缩振动、C—H的伸缩振动、C O的伸缩振动以及C—N的弯曲振动。木薯废水COD浓度为6 000 mg/L时,在颗粒污泥EPS的三维荧光光谱中,出现了显著的辅酶F420吸收峰(Ex/Em=420/470),表明在此条件下,颗粒污泥产甲烷活性良好。  相似文献   

11.
国内某化工企业产生大量的硝基甲苯生产废水,废水量300t/d,进水CODCr质量浓度为8 000mg/L、硝基苯类质量浓度为200mg/L、挥发酚质量浓度为40mg/L,经中和预处理后与其它中浓废水混合后水解生化处理,出水水质COD、色度、硝基苯类、挥发酚稍有超标,改造后采用微电解-Fenton组合工艺进行强化预处理,对工程设计参数和对污染物去除机理进行了探索,并进行了技术经济分析.实践证明,微电解-Fenton组合工艺可以经济有效的预处理硝基甲苯生产废水,COD去除率70%以上,硝基苯类和挥发酚的去除率95%以上,ρ(B)/ρ(C)比值从0.2提高到0.45左右,后续生化处理系统负荷降低,可生化性得到提高,生化出水可稳定达标排放.  相似文献   

12.
纳米TiO_2光催化降解印染废水的研究   总被引:6,自引:1,他引:5  
采用溶胶-凝胶法制备了纳米TiO2光催化剂,并用X射线衍射仪和扫描电镜对制备的TiO2进行结构表征。详细考察了照射时间、废水初始浓度、TiO2用量、pH、光源种类、H2O2、H2O2/Fe2+对实际印染废水的降解效果。研究结果表明:当反应时间为3h时,印染废水COD去除率为95.9%,脱色率达100%;印染废水的脱色率和COD去除率与印染废水的初始浓度成反比关系;TiO2光催化剂最佳用量为80mg/L;印染废水最佳降解的pH为6.0。当添加辅助氧化剂H2O2用量为600mg/L时,能进一步提高印染废水的COD去除率,特别是H2O2和Fe2+共同作用下,COD去除率达到99.%。  相似文献   

13.
蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究   总被引:4,自引:4,他引:0  
实验考察了HCO3-、CO32-、HPO42-、H2PO4-和叔丁醇等羟基自由基抑制剂存在条件下,单独臭氧氧化和臭氧/蜂窝陶瓷氧化对水中硝基苯降解效果的影响规律,初步推测了反应机理.结果表明,2种工艺对硝基苯的去除率都随着HCO3-浓度的增加(0~200 mg·L-1)先增高再降低,在浓度为50 mg·L-1时去除率达到最大值;单独臭氧氧化和臭氧/蜂窝陶瓷对硝基苯的去除率随着CO32-浓度的增加(0~20 mg·L-1)分别降低了16.57%和27.52%,随着HPO42-浓度的增加(0~12 mg·L-1)分别降低了13.61%和17.52%,随着H2PO4-浓度的增加(0~120 mg·L-1)分别降低了6.61%和12.52%,随着叔丁醇浓度的增加(0~10mg·L-1)硝基苯去除率降低了30.06%和46.09%.证明单独臭氧氧化和臭氧/蜂窝陶瓷氧化对硝基苯的降解遵循·OH氧化机理,叔丁醇更适合作为自由基抑制剂用来推断单独臭氧氧化和臭氧/蜂窝陶瓷氧化降解硝基苯的反应机理.单独臭氧氧化对硝基苯的去除率随着pH值的升高(3.02~10.96)而增大,臭氧/蜂窝陶瓷氧化对硝基苯的去除率在pH=9.23时达到最大值.  相似文献   

14.
以廉价无机盐为原料,采用溶胶-凝胶法制备纳米TiO2光催化剂,研究其对糠醛废水的光催化降解过程。实验结果表明,糠醛废水的光催化降解率受反应条件的影响较大,其最佳工艺条件为:进水COD浓度550 mg/L(其中乙酸含量约100 mg/L),光催化剂用量1.0 g/L、反应时间9 h。在此条件下,糠醛废水中的COD和乙酸的去除率分别为69.3%,60.8%。  相似文献   

15.
利用大孔网状聚氨酯载体在MBBR工艺条件下,研究了系统挂膜与启动过程,同时利用挂膜成熟稳定的载体进行低浓度硝基苯废水处理实验。研究结果表明,在20℃条件下培养的活性污泥生长状况良好,挂膜速度快,生物膜厚度大,耐冲击负荷。在MBBR反应时间24 h、材料投加量为1/4、硝基苯初始浓度为2.095mg/L的条件下,处理低浓度硝基苯废水的效果最好,CODcr去除率为92.58%,硝基苯去除率为49.82%。  相似文献   

16.
焦化废水处理中酚、氰降解细菌的分离选育   总被引:10,自引:0,他引:10  
针对焦化废水为含酚、氰废水的特性,从焦化厂处理焦化废水的活性污泥和油泥中分离出能降解酚的细菌7株,降解氰的细菌8株,并对其降解能力进行了测定,结果表明,当酚浓度为150mg/L,经6h处理后0512菌株对酚的去除率达96.84%,当CN^-浓度为25mg/L经8h处理后,0501菌株对CN^-的去除率达99.96%。  相似文献   

17.
选择性生物强化处理二元互抑体系中苯胺和硝基苯   总被引:1,自引:1,他引:0  
采用树脂吸附与生物强化相组合的方法处理含有苯胺和硝基苯的混合废水,对苯胺和硝基苯的降解抑制类型、吸附分离条件、生物强化降解过程与树脂性能变化等进行了研究.结果表明,硝基苯与苯胺均对对方的生物降解产生抑制;当进水中苯胺与硝基苯浓度分别为330与44mg/L时,在pH为4且流速为110mL/h条件下,通过装填有10mL吸附树脂NDA-150(7.2g)的吸附柱,吸附出水中硝基苯浓度低于4mg/L;吸附出水中苯胺的浓度保持不变,可通过生物强化而得到降解;吸附过程中约有597mg的硝基苯被树脂所吸附,其中约有224mg可通过生物强化方法得到脱附降解,系统降解硝基苯的容积负荷为315mg/(L·d);在此过程中树脂吸附能力获得部分恢复,其再生程度受到微生物对硝基苯降解能力的限制;70d的重复性实验证明,树脂性能保持稳定.  相似文献   

18.
以甲基橙模拟废水为降解对象,研究了填充床电化学反应器对偶氮燃料废水的电催化降解特性;结果表明初始浓度450mg/L,电解质含量为2%的甲基橙废水在30A/m2电流密度下经180min降解出水甲基橙浓度为2.93mg/L,去除率达99.3%,UV分析表明降解过程以键裂解为主,无其他大分子组分生成,其浓度变化符合一级动力学降解模型;在此基础上,采用单因素变量实验方法研究了初始甲基橙浓度、电流密度、电解质含量及进水流速对甲基橙电催化过程中动力学常数k的影响,得到各因素控制下动力学常数的数学表达式。依据一级动力学模型给出填充床电化学反应器处理甲基橙废水的浓度预测方程,以其通过电化学反应操作条件的优化实现甲基橙废水的彻底降解或对出水甲基橙浓度的准确预测。  相似文献   

19.
高铁酸钾处理废水中硝基苯的研究   总被引:1,自引:0,他引:1  
本实验以高铁酸钾为水处理剂,对其在废水中的硝基苯的去除进行了研究,考察了高铁酸钾的用量、pH值、反应时间及硝基苯的初始浓度四个影响因素对硝基苯去除率的影响,最终确定了高铁酸钾去除硝基苯的最佳反应条件为:初始pH值为9,高铁酸钾与硝基苯的摩尔比为10:1,反应时间30min,初始浓度小于254.5mg/L时,硝基苯的去除率最佳,达到到6.2%。  相似文献   

20.
赵雷  马军  刘正乾  孙志忠  侯艳君 《环境科学》2008,29(5):1233-1238
考察了有机物甲醛、甲醇、甲酸和邻苯二甲酸二丁酯对单独臭氧氧化和蜂窝陶瓷催化臭氧化工艺去除水中硝基苯降解效果的影响规律.单独臭氧氧化和蜂窝陶瓷催化臭氧化对硝基苯的去除率随着甲醛浓度的升高(0~12 mg·L-1)分别降低了11.6%和9.6%;2种工艺对硝基苯的去除率都随着甲醇浓度的增加(0~16mg·L-1,)先增高再降低,单独臭氧氧化和蜂窝陶瓷催化臭氧化分别在浓度为2 mg·L-1和4 mg·L-1时去除率达到最大值;随着甲酸浓度的增加(0~8 mg·L-1)去除率也都先增高再降低,单独臭氧氧化和蜂窝陶瓷催化臭氧化分别在浓度为0.5 mg·L-1和2 mg·L-1时去除率达到最大值;低浓度的甲醇和甲酸促进了硝基苯的降解,高浓度的甲醇和甲酸抑制了硝基苯的降解.单独臭氧氧化和蜂窝陶瓷催化臭氧化在邻苯二甲酸二丁酯浓度增加(0~10 mg·L-1)的情况下对硝基苯的去除率分别降低了19.7%和18.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号