首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

2.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty.  相似文献   

3.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was an intensive monitoring study from July through October 1999 followed by extensive assessments to determine the causes and sources of haze in Big Bend National Park, located in Southwestern Texas. Particulate sulfate compounds are the largest contributor of haze at Big Bend, and chemical transport models (CTMs) and receptor models were used to apportion the sulfate concentrations at Big Bend to North American source regions and the Carbón power plants, located 225 km southeast of Big Bend in Mexico. Initial source attribution methods had contributions that varied by a factor of > or =2. The evaluation and comparison of methods identified opposing biases between the CTMs and receptor models, indicating that the ensemble of results bounds the true source attribution results. The reconciliation of these differences led to the development of a hybrid receptor model merging the CTM results and air quality data, which allowed a nearly daily source apportionment of the sulfate at Big Bend during the BRAVO study. The best estimates from the reconciliation process resulted in sulfur dioxide (SO2) emissions from U.S. and Mexican sources contributing approximately 55% and 38%, respectively, of sulfate at Big Bend. The distribution among U.S. source regions was Texas, 16%; the Eastern United States, 30%; and the Western United States, 9%. The Carbón facilities contributed 19%, making them the largest single contributing facility. Sources in Mexico contributed to the sulfate at Big Bend on most days, whereas contributions from Texas and Eastern U.S. sources were episodic, with their largest contributions during Big Bend sulfate episodes. On the 20% of the days with the highest sulfate concentrations, U.S. and Mexican sources contributed approximately 71% and 26% of the sulfate, respectively. However, on the 20% of days with the lowest sulfate concentrations, Mexico contributed 48% compared with 40% for the United States.  相似文献   

4.
A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

5.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was conducted in Big Bend National Park, Texas, July through October 1999. Daily PM2.5 organic aerosol samples were collected on pre-fired quartz fiber filters. Daily concentrations were too low for detailed organic analysis by gas chromatography-mass spectrometry (GC-MS) and were grouped based on their air mass trajectories. A total of 12 composites, each containing 3–10 daily samples, were analyzed. Alkane carbon preference indices suggest primary biogenic emissions were small contributors to primary PM2.5 organic matter (OM) during the first 3 months, while in October air masses advecting from the north and south were more strongly influenced by biogenic sources. A series of trace organic compounds previously shown to serve as particle phase tracers for various carbonaceous aerosol source types were examined. Molecular tracer species were generally at or below detection limits, except for the wood smoke tracer levoglucosan in one composite, so maximum possible source influences were calculated using the detection limit as an upper bound to the tracer concentration. Wood smoke was found not to contribute significantly to PM2.5 OM, with contributions for most samples at <1% of the total organic particulate matter. Vehicular exhaust also appeared to make only minor contributions, with maximum possible influences calculated to be 1–4% of PM2.5 OM. Several factors indicate that secondary organic aerosol formation was important throughout the study, and may have significantly altered the molecular composition of the aerosol during transport.  相似文献   

6.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

7.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

8.
Several factors have recently caused visibility impairment at Big Bend National Park, TX, to be of interest. Analyses of historical data collected there have shown that visibility is poorer and fine particle concentrations are higher at Big Bend than at other monitored Class I areas in the western United States. In addition, air masses frequently arrive there after crossing Mexico, where emissions are not well known. During September and October 1996, a field study was undertaken to begin examining the aerosol, visibility, and meteorology on both sides of the border. Results indicate that, during the study, the largest fractions of fine mass and light extinction at Big Bend were due to sulfates and the trace elements most closely associated with sulfate particles were Na and Se. Based on back trajectory modeling and the spatial, temporal, and inter-species relationships in the fine particle concentrations measured during the study, sulfates arrived at the park from both Mexico and the United States. Se was higher in Texas than in Northern Mexico, while V, Pb, Zn, Ni, and Mn were on average much higher in Mexico.  相似文献   

9.
ABSTRACT

Several factors have recently caused visibility impairment at Big Bend National Park, TX, to be of interest. Analyses of historical data collected there have shown that visibility is poorer and fine particle concentrations are higher at Big Bend than at other monitored Class I areas in the western United States. In addition, air masses frequently arrive there after crossing Mexico, where emissions are not well known. During September and October 1996, a field study was undertaken to begin examining the aerosol, visibility, and meteorology on both sides of the border. Results indicate that, during the study, the largest fractions of fine mass and light extinction at Big Bend were due to sulfates and the trace elements most closely associated with sulfate particles were Na and Se. Based on back trajectory modeling and the spatial, temporal, and inter-species relationships in the fine particle concentrations measured during the study, sulfates arrived at the park from both Mexico and the United States. Se was higher in Texas than in Northern Mexico, while V, Pb, Zn, Ni, and Mn were on average much higher in Mexico.  相似文献   

10.
The hygroscopic properties of the organic fraction of aerosols are poorly understood. The ability of organic aerosols to absorb water as a function of relative humidity (RH) was examined using data collected during the 1999 Big Bend Regional Aerosol and Visibility Observational Study (BRAVO). (On average, organics accounted for 22% of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) mass). Hourly RH exceeded 80% only 3.5% of the time and averaged 44%. BRAVO aerosol chemical composition and dry particle size distributions were used to estimate PM2.5 light scattering (Bsp) at low and high ambient RH. Liquid water growth associated with inorganic species was sufficient to account for measured Bsp for RH between 70 and 95%.  相似文献   

11.
Back trajectory analyses are often used for source attribution estimates in visibility and other air quality studies. Several models and gridded meteorological datasets are readily available for generation of trajectories. The Big Bend Regional Aerosol and Visibility Observational (BRAVO) tracer study of July to October 1999 provided an opportunity to evaluate trajectory methods and input data against tracer concentrations, particulate data, and other source attribution techniques. Results showed evidence of systematic biases between the results of different back trajectory model and meteorological input data combinations at Big Bend National Park during the BRAVO. Most of the differences were because of the choice of meteorological data used as input to the trajectory models. Different back trajectories also resulted from the choice of trajectory model, primarily because of the different mechanisms used for vertical placement of the trajectories. No single model or single meteorological data set was found to be superior to the others, although rawinsonde data alone are too sparse in this region to be used as the only input data, and some combinations of model and input data could not be used to reproduce known attributions of tracers and simulated sulfate.  相似文献   

12.
Abstract

The hygroscopic properties of the organic fraction of aerosols are poorly understood. The ability of organic aerosols to absorb water as a function of relative humidity (RH) was examined using data collected during the 1999 Big Bend Regional Aerosol and Visibility Observational Study (BRAVO). (On average, organics accounted for 22% of fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) mass). Hourly RH exceeded 80% only 3.5% of the time and averaged 44%. BRAVO aerosol chemical composition and dry particle size distributions were used to estimate PM2.5 light scattering (Bsp) at low and high ambient RH. Liquid water growth associated with inorganic species was sufficient to account for measured Bsp for RH between 70 and 95%.  相似文献   

13.
Representative PM2.5 and PM10 source emissions were sampled in Texas during the Big Bend Regional Aerosol Visibility and Observa (BRAVO) study. Chemical source profiles for elements, ions, and carbon fractions of 145 samples are reported for paved and unpaved road dust, soil dust, motor vehicle exhaust, vegetative burning, four coal-fired power stations, an oil refinery catalytic cracker, two cement kilns, and residential meat cooking. Several samples were taken from each emitter and source type, and these were averaged by source type, and in source subgroups based on commonality of chemical composition. The standard deviation represents the variability of the chemical mass fractions. BRAVO profiles differed in some respects from profiles measured elsewhere. High calcium abundances in geological dust, high selenium abundances in coal-fired power stations, and high antimony abundances in oil refinery catalytic cracker emissions were found. Abundances of eight thermally evolved carbon fractions [Atmos. Environ. 28 (15) (1994) 2493] differ among combustion sources, and a Monte Carlo simulation demonstrates that these differences are sufficient to differentiate among several carbon-emitters.  相似文献   

14.
Peregrine falcons (Falco peregrinus) have been recorded nesting in Big Bend National Park, Texas, USA and other areas of the Chihuahuan Desert since the early 1900s. From 1993 to 1996, peregrine falcon productivity rates were very low and coincided with periods of low rainfall. However, low productivity also was suspected to be caused by environmental contaminants. To evaluate potential impacts of contaminants on peregrine falcon populations, likely avian and bat prey species were collected during 1994 and 1997 breeding seasons in selected regions of western Texas, primarily in Big Bend National Park. Tissues of three peregrine falcons found injured or dead and feathers of one live fledgling also were analyzed. Overall, mean concentrations of DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], a metabolite of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], were low in all prey species except for northern rough-winged swallows (Stelgidopteryx serripennis, mean = 5.1 microg/g ww). Concentrations of mercury and selenium were elevated in some species, up to 2.5 microg/g dw, and 15 microg/g dw, respectively, which upon consumption could seriously affect reproduction of top predators. DDE levels near 5 microg/g ww were detected in carcass of one peregrine falcon found dead but the cause of death was unknown. Mercury, selenium, and DDE to some extent, may be contributing to low reproductive rates of peregrine falcons in the Big Bend region.  相似文献   

15.
Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.  相似文献   

16.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   


17.
Atmospheric concentrations of gaseous NH3 and HNO3 and of particulate NH4+ and NO3- were measured during various seasons at a forest ecosystem research site in the "Fichtelgebirge" mountains in Central Europe. Air masses arriving at this site were highly variable with respect to trace compound concentration levels and their concentration ratios. However, the distributions of NH4+ and NO3- within the aerosol particle size spectra exhibited some very consistent patterns, with the former dominating the fine particle concentrations, and the latter dominating the coarse particles range, respectively. Overall, the particulate phase (NH4+ + NO3-) dominated the atmospheric nitrogen budget (particulate and gas phase, NH4+ + NO3- + NH3 + HNO3) by more than 90% of the median total mixing ratio in winter, and by more than 60% in summer. The phase partitioning varied significantly between the winter and summer seasons, with higher relative importance of the gaseous species during summer, when air temperatures were higher and relative humidities lower as compared to the winter season. Reduced nitrogen dominated over oxidized nitrogen, indicating the prevailing influence of emissions from agricultural activity as compared to traffic emissions at this mountainous site. A model has been successfully applied in order to test the hypothesis of thermodynamic equilibrium between the particulate and gas phases.  相似文献   

18.
The concentrations of trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed to total suspended particulate (TSP) and finer fractions of airborne particulate matter (PM) were determined from a site in the centre of Athens (Greece), which is characterized by heavy local traffic and is densely populated, during the winter and summer periods in 2003-2004. Also, we collected and analyzed samples of diesel and gasoline exhaust particles from local vehicles (buses, taxis and private cars) and from chimney exhaust of residential central heating appliances. A seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. The most commonly detected trace metals in the TSP and PM fractions were Fe, Pb, Zn, Cu, Cr, V, Ni and Cd and their concentrations were similar to levels observed in heavily polluted urban areas from local traffic and other anthropogenic emissions. Analysis of 16 PAHs bound to PM showed that they are mostly traffic related. In general, the fine particulate PAHs concentrations were higher than coarse particles. The most common PAHs in PM(10.2) and PM(2.1) were pyrene, phenanthrene, acenapthylene and fluoranthene, which are associated with diesel and gasoline exhaust particles. The results of this study underlined the importance of local emission sources, especially vehicular traffic, central heating and other local anthropogenic emissions. Compared with other big cities, Athens has much higher levels of airborne particles, especially of the finer fractions PM(10) and PM(2.5), correlated with traffic-related air pollution.  相似文献   

19.
Zhou JL  Liu YP  Abrahams PW 《Chemosphere》2003,51(5):429-440
The distribution of trace metals Zn, Ni, Mn, Fe, Cu, Pb, Cd and Cr between suspended particulate matter (SPM) and water in the Conwy estuary, North Wales, has been studied in three surveys in 1998. Dissolved Cu and Mn showed some monthly variations. Most of the dissolved trace metals displayed a negative association with salinity, indicating rivers as a major source of inputs for them. Particulate Zn, Mn and Fe showed a decreasing concentration seaward, whilst the levels of Ni, Cu, Cr and Pb increased with salinity. SPM concentration was the most important variable significantly related to trace metal concentrations in SPM, with an inverse relationship between the two parameters. This was explained by the relative enrichment of trace metals in fine particles at low SPM concentrations and relative depletion of trace metals in coarse particles at high SPM concentrations. Particulate Zn, Mn and Pb were dominated by the fraction available to acetic acid (non-detrital), whilst particulate Ni, Fe and Cr were dominated by the fraction available to nitric acid (detrital). The partition coefficient of trace metals between SPM and water declined with increasing SPM concentration, consistent with the so-called "particle concentration effect". Such a phenomenon may be explained by the presence of fine particles (including colloids) enriched with trace metals at low SPM concentrations, and the salinity-induced desorption.  相似文献   

20.
Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 microm (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号