首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of hot spots for urban fine particulate matter (PM(2.5)) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM(2.5) patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM(2.5) concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM(2.5) variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations.  相似文献   

2.
Statistical analyses of time-series or spatial data have been widely used to investigate the behavior of ambient air pollutants. Because air pollution data are generally collected in a wide area of interest over a relatively long period, such analyses should take into account both spatial and temporal characteristics. The objective of this study is 2-fold: (1) to identify an efficient way to characterize the spatial variations of fine particulate matter (PM2.5) concentrations based solely upon their temporal patterns, and (2) to analyze the temporal and seasonal patterns of PM2.5 concentrations in spatially homogenous regions. This study used 24-hr average PM2.5 concentrations measured every third day during a period between 2001 and 2005 at 522 monitoring sites in the continental United States. A k-means clustering algorithm using the correlation distance was used to investigate the similarity in patterns between temporal profiles observed at the monitoring sites. A k-means clustering analysis produced six clusters of sites with distinct temporal patterns that were able to identify and characterize spatially homogeneous regions of the United States. The study also presents a rotated principal component analysis (RPCA) that has been used for characterizing spatial patterns of air pollution and discusses the difference between the clustering algorithm and RPCA.  相似文献   

3.
This study investigates how PM2.5 varies spatially and how these spatial characteristics can be used to identify potential monitoring sites that are most representative of the overall ambient exposures to PM2.5 among susceptible populations in the Seattle, WA, area. Data collected at outdoor sites at the homes of participants of a large exposure assessment study were used in this study. Harvard impactors (HIs) were used at 40 outdoor sites throughout the Seattle metropolitan area. Up to six sites at a time were monitored for 10 consecutive 24-hr average periods. A fixed-effect analysis of variance (ANOVA) model that included date and location effects was used to analyze the spatial variability of outdoor PM2.5 concentrations. Both date and location effects were shown to be highly significant, explaining 92% of the variability in outdoor PM2.5 measurements. The day-to-day variability was 10 times higher than the spatial variability between sites. The site mean square was more than twice the error mean square, showing that differences between sites, while modest, are potentially an important contribution to measurement error. Variances of the model residuals and site effects were examined against spatial characteristics of the monitoring sites. The spatial characteristics included elevation, distance from arterials, and distance from major PM2.5 point sources. Results showed that the most representative PM2.5 sites were located at elevations of 80-120 m above sea level, and at distances of 100-300 m from the nearest arterial road. Location relative to industrial PM2.5 sources is not a significant predictor of residential outdoor PM2.5 measurements. Additionally, for sites to be representative of the average population exposures to PM2.5 among those highly susceptible to the health effects of PM2.5, areas of high elderly population density were considered. These representative spatial characteristics were used as multiple, overlapping criteria in a Geographic Information System (GIS) analysis to determine where the most representative sites are located.  相似文献   

4.
5.
Methods are presented to extract intra-seasonal meteorological patterns at three scales to explain 24-h fine particulate matter (PM2.5) pollution events: evolving large-scale meteorological scenarios, synoptic regimes driving diurnal variability near the surface, and localized meteorological triggers. The methods were applied to understand how winter weather conditions impacted PM2.5 around the San Francisco Bay Area (SFBA). Analyzing data across 12 winters (November–March) ensured robust characterization of the SFBA conditions. SFBA 24-h PM2.5 exceedances (35 μg m?3) required several simultaneous characteristics: a ridge of aloft high pressure moving over SFBA, providing weak surface pressure gradients over Central California; persistent easterly flows through SFBA extending vertically to around the 925-hPa pressure level; orographically channeled winds resulting from stability; enhanced nocturnal cooling under clear-sky conditions providing for enhanced drainage flows off the Central California slopes; and at least two consecutive days of these conditions.  相似文献   

6.
Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM2.5 and BC were monitored continuously for 4–6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2–3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.  相似文献   

7.
Gildemeister AE  Hopke PK  Kim E 《Chemosphere》2007,69(7):1064-1074
Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality.  相似文献   

8.
Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 microm (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.  相似文献   

9.
A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-beta-D-altro-heptulopyranose) in 20 microL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 +/- 6% from five filters amended with 2 microg levoglucosan, and the reproducibility of the assay is 9%. The limit of detection is approximately 0.1 microg/mL, which is equivalent to approximately 3.5 ng/m3 for a 10 L/min sampler or approximately 8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter < or = 2.5 microm or PM with aerodynamic diameter < or = 10 microm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

10.
Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.  相似文献   

11.
Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship between mobile source emissions and subsequent fine particulate matter (PM2.5) exposure. Since this relationship varies by location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered emissions of primary PM2.5 as well as particle precursors SO2 and NOx from each of 3080 counties in the US. We modeled the relationship between these emissions and total US population exposure to PM2.5, making use of a source–receptor matrix developed for health risk assessment. For primary PM2.5, we found a median iF of 1.2 per million, with a range of 0.12–25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away. For secondary ammonium sulfate from SO2 emissions, the median iF was 0.41 per million (range: 0.050–10), versus 0.068 per million for secondary ammonium nitrate from NOx emissions (range: 0.00092–1.3). The median distance to half of the total exposure was greater for secondary PM2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using exhaustive population predictors explained much of the variation in primary PM2.5 iF (R2=0.83) as well as secondary sulfate and nitrate iF (R2=0.74 and 0.60), with greater near-source contribution for primary than for secondary PM2.5. We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of secondary PM2.5 or primary PM2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models are warranted for primary PM2.5 in urban areas due to the substantial contribution of near-source populations.  相似文献   

12.
An analysis of fine particulate data in eastern North Carolina was conducted to investigate the impact of the hog industry and its emissions of ammonia into the atmosphere. The fine particulate data are simulated using ISORROPIA, an equilibrium thermodynamic model that simulates the gas and aerosol equilibrium of inorganic atmospheric species. The observational data analyses show that the major constituents of fine particulate matter (PM2.5) are organic carbon, elemental carbon, sulfate, nitrate, and ammonium. The observed PM2.5 concentration is positively correlated with temperature but anticorrelated with wind speed. The correlation between PM2.5 and wind direction at some locations suggests an impact of ammonia emissions from hog facilities on PM2.5 formation. The modeled results are in good agreement with observations, with slightly better agreement at urban sites than at rural sites. The predicted total inorganic particulate matter (PM) concentrations are within 5% of the observed values under conditions with median initial total PM species concentrations, median relative humidity (RH), and median temperature. Ambient conditions with high PM precursor concentrations, low temperature, and high RH appear to favor the formation of secondary PM.  相似文献   

13.
Air quality field data, collected as part of the fine particulate matter Supersites Program and other field measurements programs, have been used to assess the degree of intraurban variability for various physical and chemical properties of ambient fine particulate matter. Spatial patterns vary from nearly homogeneous to quite heterogeneous, depending on the city, parameter of interest, and the approach or method used to define spatial variability. Secondary formation, which is often regional in nature, drives fine particulate matter mass and the relevant chemical components toward high intraurban spatial homogeneity. Those particulate matter components that are dominated by primary emissions within the urban area, such as black carbon and several trace elements, tend to exhibit greater spatial heterogeneity. A variety of study designs and data analysis approaches have been used to characterize intraurban variability. High temporal correlation does not imply spatial homogeneity. For example, there can be high temporal correlation but with spatial heterogeneity manifested as smooth spatial gradients, often emanating from areas of high emissions such as the urban core or industrial zones.  相似文献   

14.
The National Air Surveillance Network (NASN) has collected samples of suspended particulate matter since 1957. These data values are graphically summarized by the application of Whittaker-Henderson Type A curve-smoothing formulas to 10 years of data. Fifty-eight urban sites and 20 nonurban sites are studied by this technique, which permits an intuitive grasp of the underlying cyclical patterns as well as long-term trends in nationwide levels of suspended particulate matter. Seasonal patterns are evident for many urban and nonurban sites, although sharp contrasts in seasonal characteristics exist between the two types of sites. Long-term levels tend slightly downward at many urban locations, but the opposite effect is observed at many nonurban sites.  相似文献   

15.
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM2.5) and coarse (aerodynamic diameter 2.5–10 μm; PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 μg/m3) and PM10 (107.8 μg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 μg/m3) and PM10 (20 μg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: (1) soil/road dust, (2) incineration, and (3) traffic; and for PM2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting.

Implications: Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM2.5–10 is natural windblown soil and road dust, whereas the predominant source of PM2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.  相似文献   


16.
Source contributions to fine particulate matter in an urban atmosphere   总被引:10,自引:0,他引:10  
Park SS  Kim YJ 《Chemosphere》2005,59(2):217-226
This paper proposes a practical method for estimating source attribution by using a three-step methodology. The main objective of this study is to explore the use of the three-step methodology for quantifying the source impacts of 24-h PM2.5 particles at an urban site in Seoul, Korea. 12-h PM2.5 samples were collected and analyzed for their elemental composition by ICP-AES/ICP-MS/AAS to generate the source composition profiles. In order to assess the daily average PM2.5 source impacts, 24-h PM2.5 and polycyclic aromatic hydrocarbons (PAH) ambient samples were simultaneously collected at the same site. The PM2.5 particle samples were then analyzed for trace elements. Ionic and carbonaceous species concentrations were measured by ICP-AES/ICP-MS/AAS, IC, and a selective thermal MnO2 oxidation method. The 12-h PM2.5 chemical data was used to estimate possible source signatures using the principal component analysis (PCA) and the absolute principal component scores method followed by the multiple linear regression analysis. The 24-h PM2.5 source categories were extracted with a combination of PM2.5 and some PAH chemical data using the PCA, and their quantitative source contributions were estimated by chemical mass balance (CMB) receptor model using the estimated source profiles and those in the literature. The results of PM2.5 source apportionment using the 12-h derived source composition profiles show that the CMB performance indices; chi2, R2, and percent of mass accounted for are 2.3%, 0.97%, and 100.7%, which are within the target range specified. According to the average PM2.5 source contribution estimate results, motor vehicle exhaust was the major contributor at the sampling site, contributing 26% on average of measured PM2.5 mass (41.8 microg m-3), followed by secondary sulfate (23%) and nitrate (16%), refuse incineration (15%), soil dust (13%), field burning (4%), oil combustion (2.7%), and marine aerosol (1.3%). It can be concluded that quantitative source attribution to PM2.5 in an urban area where source profiles have not been developed can be estimated using the proposed three-step methodology approach.  相似文献   

17.
介绍了室内外空气颗粒物吸入暴露的评价方法,选择PM2.5作为检测评价的对象,初步评价了上海市某区不同年龄段人员的PM2.5暴露水平。结果表明:(1)成人和老人的全年日平均PM2.5吸入暴露量均较高,并且成人的全年日平均PM2.5吸入暴露量变化曲线和儿童相似。(2)老人室内PM2.5吸入暴露量要明显高于室外,其主要原因是老人在室内时间较长。儿童和成人的室外PM2.5吸入暴露量高于室内。(3)不同人员的年平均PM2.5吸入暴露量的排序为成人老人儿童,其年平均PM2.5吸入暴露量分别为1.141、1.046、0.935mg。  相似文献   

18.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

19.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in Huangshi, central China, from March 2012 to February 2013 and were analyzed for dicarboxylic acids (diacids) and related compounds (DARCs). Oxalic acid (C2; 416 ng m?3) was the most abundant species, followed by phthalic (Ph; 122 ng m?3), terephthalic (tPh; 116 ng m?3), succinic (C4; 70.4 ng m?3), azelaic (C9; 67.9 ng m?3), and adipic (C6; 57.8 ng m?3) acids. Relatively high abundances of Ph and tPh differed from the distribution in urban and marine aerosols, indicating contributions from nearby anthropogenic sources. Glyoxylic acid (ωC2; 41.4 ng m?3) was the dominant oxoacid, followed by 9-oxononanoic (ωC9; 40.8 ng m?3) and pyruvic (Pyr; 24.1 ng m?3) acids. Glyoxal (Gly; 35.5 ng m?3) was the dominant α-dicarbonyl. Highest average concentrations were found for C2, ωC2, and C9 in autumn, for C4, for Pyr and C6 in spring, for Ph, ωC9, and Gly in summer, whereas the lowest values were observed in winter. Seasonal variations and correlation coefficients of DARCs demonstrate that both primary emissions and secondary production are important sources. Principal component analysis of selected DARCs species suggests that a mixing of air masses from anthropogenic and biogenic sources contribute to the Huangshi aerosols.

Implications: Both primary emissions and secondary production are important sources of diacids and related compounds in PM2.5 from Huangshi, central China. Principal component analysis of selected diacids in Huangshi aerosols suggests that mixing of air masses from anthropogenic and biogenic sources contribute to ambient aerosols in central China.  相似文献   


20.
Speciated particulate matter (PM)2.5 data collected as part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) program in Phoenix, AZ, from April 2001 through October 2003 were analyzed using the multivariate receptor model, positive matrix factorization (PMF). Over 250 samples and 24 species were used, including the organic carbon and elemental carbon analytical temperature fractions from the thermal optical reflectance method. A two-step approach was used. First, the species excluding the carbon fractions were used, and initially eight factors were identified; non-soil potassium was calculated and included to better refine the burning factor. Next, the mass associated with the burning factor was removed, and the data set rerun with the carbon fractions. Results were very similar (i.e., within a few percent), but this step enabled a separation of the mobile factor into gasoline and diesel vehicle emissions. The identified factors were burning (on average 2% of the mass), secondary transport (7%), regional power generation (13%), dust (25%), nitrate (9%), industrial As/Pb/Se (2%), Cu/Ni/V (7%), diesel (9%), and general mobile (26%). The overall contribution from mobile sources also increased, as some mass (OC and nitrate) from the nitrate and regional power generation factors were apportioned with the mobile factors. This approach allowed better apportionment of carbon as well as total mass. Additionally, the use of multiple supporting analyses, including air mass trajectories, activity trends, and emission inventory information, helped increase confidence in factor identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号