首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

2.
为了解决常规污水处理技术无法进行完整的硝化反硝化过程,污水厂出水中氨氮、总氮、总磷偏高以及运行成本较高的问题,以某污水厂排水为研究对象,通过物化与生化耦合,构建化学催化生物耦合床(CCBF)脱氮系统,研究CCBF系统对污水厂排水中氨氮、总氮、总磷和COD的去除效能。结果表明:当DO为5.5~6.0 mg·L−1、RT为8 h、C/N为1.5∶1时,CCBF可将${\rm{NH}}_4^{+} $-N从48.5 mg·L−1降至4.58 mg·L−1、TN从51.2 mg·L−1降至6.5 mg·L−1、TP从6.6 mg·L−1降至0.48 mg·L−1、COD从78.5 mg·L−1降至33 mg·L−1,去除率分别达到89.5%、85.7%、92.5%和57.9%;污水经处理后,氨氮、总氮、总磷、COD均达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放标准。利用Eckenfelder方程对系统脱氮过程进行模拟,求得${n_{{\rm{NH}}_4^ +{\text{-}} {\rm{N}}}} $=0.314 76,nTN=0.282 21,${K_{{\rm{NH}}_4^ +{\text{-}} {\rm{N}}}} $=0.128 02,KTN=0.218 59,与水力负荷为0.000 8~0.007 m3·(m2·min)−1的常规生物处理相比,系统内部生物量充足、活性高,物化与生物耦合强化效果明显。  相似文献   

3.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

4.
猪场养殖废水是一类有机污染物浓度高、悬浮物多、性质复杂的废水,在传统厌氧处理中存在消化污泥流失及处理效率低等问题。本研究采用中试规模外部浸没式厌氧膜生物反应器处理猪场实际废水,设计处理水量为1 m3·d−1,在HRT分别为8、5、3 d的3个阶段连续运行4个多月,考察了厌氧膜生物反应器的沼气产量、运行稳定性、污染物去除效果及膜组件运行性能和清洗效果。结果表明,系统运行期间ORP在−486~−545 mV;随着HRT缩短,有机负荷由0.5~1.88 kg·(m3·d)−1升高到5 kg·(m3·d)−1,沼气产量逐渐增大,产率为0.38~0.45 m3·kg−1。在整个运行过程中,VFA/ALK始终小于0.1,系统运行稳定。对TCOD、溶解性COD、氨氮、TN、TP去除率分别达到74%~86%、48%~68%、7%~12.8%、4.6%~16.7%、5%,其中溶解性COD去除率占总COD去除率的55%左右。系统运行期间初始膜通量设定为5 L·(m2·h)−1,在HRT=8 d时,清洗周期为20 d,随后不断缩短,当HRT为3 d时,清洗周期仅为10 d。通过水冲洗与化学清洗相结合的方式可有效缓解膜污染,进而恢复膜通量。以上研究结果可以为厌氧膜生物反应器处理猪场养殖废水工程应用提供参考。  相似文献   

5.
针对柠檬酸生化尾水生化性差、色度高的特点,以MnOx-CeOx复合双金属氧化物作为催化剂,采用臭氧催化氧化-移动床生物膜反应器(MBBR)组合工艺对柠檬酸生化尾水进行了深度处理。结果表明,在臭氧投加量为30 mg·L−1,臭氧进气量为1 m3·h−1,水力停留时间为60 min的条件下,臭氧催化系统对柠檬酸生化尾水COD去除率为35.4%,平均COD由110 mg·L−1降至70 mg·L−1;平均色度由90倍降至15倍,色度去除率为83.3%;出水BOD5/COD由0.08提升至0.23,废水生化性得到显著提高。在气水比为4∶1、水力停留时间为6 h的MBBR系统中,出水COD则进一步降至32~40 mg·L−1,色度维持在10倍左右。此外,该组合工艺具有良好的运行稳定性,综合运行成本较低(0.79 元·t−1)。以上研究结果表明,臭氧催化氧化-MBBR组合工艺对柠檬酸生化尾水具有较好的综合处理效果,可为柠檬酸行业污水处理系统的升级改造提供参考。  相似文献   

6.
部分硝化的稳定运行在一体式部分硝化-厌氧氨氧化工艺(PN/A)中至关重要。探索了在内循环接触氧化型膜生物反应器(ICCOMBR)中改变进水氨氮负荷(ALR)后,反应器中部分硝化过程受到的影响及恢复过程。结果表明:在HRT为24 h,DO为2.0~2.5 mg·L−1时,系统进水ALR降为0.10 kg·(m3·d)−1(氨氮为100 mg·L−1),部分硝化过程迅速破坏;当系统进水ALR升至0.40 kg∙(m3·d)−1(氨氮为400 mg·L−1),部分硝化过程在3 d内迅速恢复;部分硝化恢复稳定后,再提高ALR至0.60 kg·(m3·d)−1(氨氮为400 mg·L−1),并通过调整HRT和DO,最终在HRT为16 h、DO为0.5~1.0 mg·L−1时成功实现部分硝化;通过改变曝气量(AR),在AR为0.9 L·min−1时,控制DO为(0.76±0.11) mg·L−1,系统pH为9.7~8.2,可成功启动部分亚硝化。  相似文献   

7.
为提高人工湿地对污水处理厂尾水的处理效率,采用以黄铁矿和砾石为基质的两种垂直潜流人工湿地处理武汉某污水处理厂尾水,研究了不同水力负荷下人工湿地去除污染物的效果,并分析了基质的微生物群落结构。结果表明,在低水力负荷(0.4~0.7 m3/(m2·d))下,两种人工湿地对尾水化学需氧量(COD)、总氮(TN)、NO-3和总磷(TP)具有较好的去除效果;在高水力负荷(1.0~1.3 m3/(m2·d))下,对氨氮去除效果较好。黄铁矿人工湿地对尾水COD、TN、NO-3和TP的去除效果好于砾石,分析基质微生物发现,黄铁矿人工湿地中反硝化脱氮菌属主要为硫杆菌属(Thiobacillus)和硫氧化菌属(Sulfurifustis),相对丰度分别为16.68%和4.62%,且硫杆菌属具有提高磷去除能力的功能;而砾石人工湿地中反硝化脱氮菌属主要为类固醇杆菌属(Steroidobacter),相对丰度为4.56%,采用黄铁矿为基质...  相似文献   

8.
为考察ZnO NPs粒径效应对人工湿地运行性能的影响,在进水COD约为216.00 mg·L-1、总氮约为11.10 mg·L−1和总磷约为3.84 mg·L−1的条件下连续运行126 d,对暴露于不同粒径ZnO NPs(10.00 mg·L−1)的人工湿地脱氮除磷性能、填料渗透系数、胞外聚合物(extracellular polymeric substances,EPS)产量和特性以及微生物群落结构和多样性的变化进行了研究。结果表明:与对照组(未投加ZnO NPs)相比,进水中投加15、50和90 nm ZnO NPs后,人工湿地对COD的去除率分别下降了8.73%、7.55%和6.97%;氨氮和总氮的去除率分别下降了21.96%和10.95%、17.75%和10.00%以及15.34%和3.78%。高通量测序结果表明,ZnO NPs粒径越小,对硝化菌属Thauera的抑制作用越明显。投加ZnO NPs后,其释放的Zn2+会与水中磷酸盐结合生成磷酸锌等不溶物,同时会增加异养硝化菌Acinetobacter的相对丰度,从而导致总磷的去除率比对照组提高了42.49%~56.38%。此外,与对照组(97.18 mg·g−1)相比,投加15、50和90 nm的ZnO NPs后EPS的产量分别增加到212.97、156.30和128.53 mg·g−1。EPS分泌量的增大,导致填料渗透系数快速降低,在运行83 d后分别下降了71.17%、67.83%和37.50%。  相似文献   

9.
将电气石与生物膜技术结合构建电气石强化生物膜系统处理中药废水,通过电气石调节生物膜微环境,以增强微生物代谢活性,从而提高了反应系统的处理能力。结果表明:电气石强化厌氧流化床(AFBR)反应系统经历160 d完成中药废水的启动实验,反应系统COD去除率达到87.8%,容积负荷达到5.34 kg·(m3·d)−1,生物膜产甲烷活性达到126.4 mL·(g·d)−1;电气石强化好氧流化床(FBR)反应系统统经历35 d完成启动实验后,出水COD稳定在76.5 mg·L−1,反应系统对应的COD去除率和容积负荷分别为90.3%和1.4 kg·(m3·d)−1。中药废水依次经AFBR和FBR处理后,出水水质满足《中药类制药工业水污染物排放标准》(GB 21906-2008)排放要求。以上结果可为实际工程项目提供理论依据和参考。  相似文献   

10.
针对现有微氧反应器存在回流能耗高、工程放大困难等问题,设计了2类新型曝气沉淀一体化微氧反应器。根据污泥滞留能力、污染物去除性能初步测试,优选出升流式矩形反应器和改进型圆形反应器作为沼液处理实验的微氧反应器。结果表明:2个反应器的平均NH4+-N去除负荷为0.410 kg·(m3·d)−1,平均TIN去除负荷为0.105 kg·(m3·d)−1,出水SS均小于0.10 g·L−1,都拥有优良的滞泥能力和污染物去除能力,无显著性差异(P>0.05)。在污泥浓度相近的情况下,升流式矩形反应器中污泥的VSS/SS由64.4%增至78.0%,这说明生物量明显增加,而改进型圆形反应器中污泥的VSS/SS降至62.1%;污泥指数显示升流式矩形反应器的污泥沉降性能更好。从污泥性状和工程放大可能性考虑,升流式矩形反应器更适合在工程上应用。  相似文献   

11.

集便器污水具有高有机物、高悬浮物、高氨氮、高磷及低碳氮比的特点。采用一体式短程硝化-厌氧氨氧化耦合反硝化系统进行集便器污水的污染物去除效能研究。结果表明,将氨氮为400~500 mg·L−1、COD约400 mg·L−1的集便器污水作为实验进水,按照分阶段分比例的进水方式,经过约75 d运行,最终出水氨氮及总氮仅为40.20 mg·L−1和67.40 mg·L−1,去除率分别为90.84%和86.90%,总氮去除负荷为0.141 kg·(m3·d)−1。微生物分析结果表明,Candidatus_Brocadia始终是系统内的厌氧氨氧化优势菌属,且运行稳定后其相对丰度达到约30.70%。本研究可为集便器污水脱氮工艺应用技术提供参考。

  相似文献   

12.
为高效、稳定处理船舶生活污水,研究了船用景观一体化反硝化除磷装置面对短期水质波动的效能变化,采用富集反硝化聚磷菌(DPAOs)的ABR-CSTR连续流组合工艺耦合生态单元处理船舶生活污水,对比了ABR进水容积负荷(VLR)为1.2 kg·(m3·d)−1、COD为350 mg·L−1的基准条件,通过短期内提高进水中有机底物的浓度,来模拟1.5倍和2.0倍进水有机负荷的有机冲击,此外通过控制硝化液回流比及溶解氧获得应对冲击的调控策略。结果表明:在2种短期冲击下,COD去除率分别为94.1%和92.6%,出水BOD和TN可达标,生物单元出水磷平均为0.76 mg·L−1和1.14 mg·L−1,缺氧吸磷量为7.13 mg·L−1和5.82 mg·L−1,生态单元可深度降解氮磷及缓冲波动;在1.5倍VLR下,调整硝化液回流比由200%至300%,反硝化吸磷量由7.10 mg·L−1升至7.41 mg·L−1,在2.0倍冲击下,提高硝化液回流比对系统除磷帮助甚微,将DO从1.5 mg·L−1升至2.0 mg·L−1,吸磷量由5.17 mg·L−1升至6.01 mg·L−1,系统反硝化除磷效果得以提升;污泥特性方面,ABR内MLVSS/MLSS比值和EPS量随有机底物浓度的提高而上升,厌氧段EPS增幅最大,可由154.5 mg·g−1升至164.2 mg·g−1和183.4 mg·g −1。ABR-CSTR-生态单元一体化装置面对短期有机冲击具有稳定处理效果,研究结果可为船舶生活污水的治理提供参考。  相似文献   

13.
洪瑜  王英  王芳  刘汝亮  刘婷 《环境工程学报》2019,13(11):2637-2645
为了探索植物浮床技术应用和农业面源污染防治的有效措施,采用稻田退水沟渠原位实验,研究了美人蕉(Canna indica)、千屈菜(Lythrum salicaria)、黄菖蒲(Iris pseudacorus)、空心菜(Ipomoea aquatica)、水稻(Oryza sativa)5种不同浮床植物对退水中氮、磷的去除效果。结果表明,在稻田退水中生长4个月后,5种浮床植物生物量均大幅度增加。其中,美人蕉生物增长量最大,为97.2 g·株−1,其次为千屈菜达到81.3 g·株−1;空心菜成活率最高,达到91.67%,美人蕉其次,为87.50%,而水稻成活率最低,仅为60.71%;千屈菜茎叶和根系的氮含量最高,分别达到0.85%和0.65%;美人蕉茎叶、根系的磷含量最高,分别达到0.15%、0.17%;空心菜氮吸收量最高,达到14 239.46 mg·m−2,美人蕉其次,为10 798.00 mg·m−2;水稻磷吸收量最高,达到407.11 mg·m−2,空心菜其次,为374.41 mg·m−2;空心菜对稻田退水中总氮(TN)去除率最高,达到85.88%,其次为美人蕉,为81.67%;空心菜总磷(TP)去除率最高,达到80.32%,其次为水稻,达到72.86%。根据上述实验结果,推荐浮床空心菜和美人蕉作为宁夏引黄灌区农田排水沟水质改善的主要植物。  相似文献   

14.
为了实现中低浓度氨氮废水情况下CANON工艺的快速启动和稳定运行,在升流式生物膜反应器中,通过调控水力停留时间、溶解氧和回流比,研究进水氨氮浓度为200 mg·L−1时CANON工艺的快速启动过程。结果表明:1~17 d,污泥处于驯化阶段,HRT为12 h,DO控制在0.1~0.2 mg·L−1,50%的回流比满足污泥上升流态;18~60 d,HRT逐步缩短至8 h,DO控制在0.3~0.5 mg·L−1,回流比增大至150%,AOB和 ANAMMOX在该阶段成功富集,填料上初步形成生物膜;61 d时,HRT缩短至6 h,加大回流比至200%,溶解氧控制在0.3~1.0 mg·L−1,系统启动加速,此时,进水氨氮负荷增加至0.795 kg·(m3·d)−1;运行至第93天,氨氮和总氮平均去除率分别达到95%和82%,ANAMMOX完成挂膜,CANON工艺成功启动。高通量测序结果显示,在整个启动过程中,优势菌群AOB和ANAMMOX的丰度呈增长趋势,启动完成时,生物膜中AOB占比19.46%,ANAMMOX占比22.49%,分别属于BrocadiaceaeNitrosmonadaceae。CANON系统集成絮体、颗粒和填料挂膜3种污泥形态为一体,实现了在中低浓度氨氮废水中的高效稳定运行。  相似文献   

15.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明, 当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L−1,COD值为4 000~5 000 mg·L−1时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m3·d)−1、总氮去除率可达93.1%(出水TN=176.3 mg·L−1)、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中${\rm{NO}}_x^{-} $-N浓度为154.5 mg·L−1,仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L−1)。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水${\rm{NH}}_4^{+} $-N、${\rm{NO}}_2^{-} $-N、${\rm{NO}}_3^{-} $-N平均浓度分别为1.9、0.6、9.7 mg·L−1,TN≤15 mg·L−1,进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

16.
为考察氨氮浓度对中温厌氧消化处理马铃薯加工废水的影响,通过批式实验,探究该类废水厌氧消化处理的氨氮抑制阈值。结果表明:氨氮浓度为3 000 mg·L−1 (TAN≈3 659 mg·L−1)时,累积产甲烷量降低至276.1 mL·g−1且出现产甲烷迟滞期;氨氮浓度为4 000 mg·L−1 (TAN≈4 468 mg·L−1)时,累积产甲烷量仅为对照组的39.2%,迟滞期明显延长了7.2 d;高浓度氨氮抑制造成了以丙酸为主的VFAs积累和有机物(蛋白质等)降解不完全,这是COD去除率下降的主要原因;VFAs作为氨氮抑制发生时COD的主要组分,其积累可作为马铃薯加工废水厌氧消化过程发生氨氮抑制的指示因子;马铃薯加工废水中温厌氧消化的氨氮阈值约为3 000 mg·L−1。该结果可为马铃薯加工废水的高效处理与资源化利用提供参考。  相似文献   

17.
为了解决高盐榨菜废水的处理问题,对厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理高盐榨菜废水的3个运行阶段(盐度提升阶段、负荷提升阶段和排泥运行阶段)的消化性能和膜污染特性进行了研究。结果表明,当盐度由初始的12.9 g·L−1逐渐升高到33.5 g·L−1左右、且负荷维持在0.5~1.0 kg·(m3·d)−1(以COD计)时,COD去除率及沼气产率随盐度的提升先下降后升高,最后分别稳定在75%和300 mL·g−1(以COD计)以上,低负荷耐盐性驯化方式能够实现AnMBR的快速启动;当负荷逐渐增加约至7.6 kg·(m3·d)−1时,COD去除率达到80%左右,沼气产率稳定在330~380 mL·g−1,VFA/ALK始终低于0.15,这表明AnMBR对高盐榨菜废水具有良好的处理效果和较强的运行稳定性;在排泥运行阶段,AnMBR的COD去除率和沼气产率均有明显上升,分别达到83%和400 mL·g−1左右,这表明排泥可以提高消化性能。此外,排泥有利于减缓膜污染。SEM-EDX表征结果表明,膜面污染物中存在大量的有机物和无机盐类晶体物质,工程应用中建议采用NaClO清洗+酸清洗的组合清洗方式。以上研究结果可以为高盐榨菜废水处理工业化应用提供参考。  相似文献   

18.
针对进水氨氮浓度变化会影响CANON颗粒污泥功能微生物间的协同导致系统不稳定的问题,通过接种常温下贮存2个月的自养颗粒污泥,并采用3种调控策略(维持HRT不变,快速提升氨氮浓度(R1);维持HRT不变,逐级提升氨氮浓度(R2);逐级提升进水氨氮浓度同时调整HRT,以125 mg·L−1为进水氨氮增幅(R3)),分别考察各种调控策略对系统适应275 mg·L−1和400 mg·L-1氨氮浓度的效能影响,探讨调控策略与污泥性能的关系及游离氨(FA)、溶解氧(DO)的影响。结果表明,污泥性能提升期,负荷变化最为平稳的策略R3率先适应进水氨氮浓度的提升,仅44 d内总氮去除负荷可达到3.5 kg·(m3·d)−1;污泥性能成熟期,快速提升负荷的策略R1可缩短适应时间至25 d,总氮去除率稳定在80%以上,去除负荷达到5.3 kg·(m3·d)−1。FA会影响功能微生物活性,策略R1在污泥性能提升期,FA浓度高达16.6~26.7 mg·L−1,一定程度上抑制了好氧氨氧化菌(AOB)和厌氧氨氧化菌(AMX)的活性,导致系统适应期延长。在污泥适应高氨氮负荷过程中,比氨氧化速率(SAOR)和比总氮去除速率(SNRR)逐渐提高,污泥浓度和颗粒粒径逐渐增大。f值(Δ$ {\rm{NO}}_3^{-}$-N/ΔTN)可作为DO调节的重要依据,DO与氨氮去除负荷呈良好的正相关性。  相似文献   

19.
针对高硬度废水生化处理过程中生成的无机灰分导致污泥活性降低和沉降性差等问题,采用旋流分离方法实现污泥原位脱灰以改善废水综合处理效能。通过离线和在线实验,探究了污泥与无机灰分的结合形式、泥灰混合物旋流分离效率以及旋流处理对高硬度废水生化处理效率的影响。结果表明,6组不同Ca2+浓度的来水经过150 d生化实验,生化池污泥有机质占比从进水Ca2+浓度为0 mg·L−1时的0.75降至Ca2+浓度为2 400 mg·L−1时的0.39,生化系统COD和氨氮去除率也相应降低11%和60%;原子力显微镜测试结果表明,来水含钙条件下生化池污泥表面因无机灰分附着导致其粗糙度从无钙来水下的20.5 nm增至38.2 nm,且活性污泥与无机灰分间的非稳态结合可通过离心等物理法实现分离;来水Ca2+浓度为800 mg·L−1时,泥灰混合液经过最佳结构旋流器10次循环分离,其有机质占比从0.17升高至0.37;依托120 m3·h−1煤制氢废水处理SBR进行旋流脱灰侧线实验,经过3个月连续运行,改造生化池污泥有机质占比较对比样从0.21提升至0.45,且出水平均COD和氨氮分别降低17.1 mg·L−1和14.3 mg·L−1。活性污泥在线旋流分离调理可为高硬度废水生化处理提标改造提供参考。  相似文献   

20.
在3台UASB反应器中分别以厌氧颗粒污泥、湿地底泥以及二者的混合物(污泥浓度比为1∶1)为接种污泥启动厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)反应器,考察了以湿地底泥为接种物启动Anammox反应器的可行性。结果表明,接种厌氧颗粒污泥的反应器经过183 d启动运行,仍未出现明显厌氧氨氧化反应特性,接种混合污泥的反应器于第125天开始出现明显厌氧氨氧化反应特性,短于接种湿地底泥的155 d。Anammox反应器启动并稳定运行后,在进水总氮质量浓度为275 mg·L−1、负荷为0.275 kg·(m3·d)−1条件下,出水总氮质量浓度可降至90 mg·L−1以下,其中接种湿地底泥和混合污泥的Anammox反应器的TN去除率分别达到74.49%和67.12%。高通量结果表明,在接种湿地底泥和混合污泥的反应器中的厌氧氨氧化菌属为Candidatus Brocadia,其丰度分别达到9.82%和10.70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号