首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中国火电企业二氧化硫排放研究   总被引:1,自引:0,他引:1  
火力发电是中国电力工业最重要的组成部分,历年来火力发电占中国发电总量的比例基本都在80%以上,这直接导致中国火电企业的二氧化硫高排放量.中国目前火电企业的二氧化硫排放量已占工业排放量的一半以上.近年来,中国火电企业的空间分布格局基本不变,但其二氧化硫高排放量正由东部局部地区向中、西部蔓延,这与中国火电企业发展迅速,总体脱硫水平低,东、中,西部地区火电企业脱硫水平差异有关.  相似文献   

2.
将传统的碳排放因子法与人口权重分配法相结合,估算了2015年中国2 170个县域的碳排放量,并将县域分为高/低碳排放量-高/低碳排放强度的4种类型。分析表明:(1)县域的平均碳排放量为1 287×103 t,但差异较大,空间分布上整体呈现东高西低;81.58%的县域的碳排放强度在0.01~1.05t/万元,空间分布上呈现西部及西北高、东部及东南低。(2)低碳排放量-低碳排放强度类县域数量最多(占45.81%),在全国除东南沿海区域均有分布;高碳排放量-低碳排放强度类县域分布在中国部分华北地区及东部、东南沿海地区,中部也有少量分布;高碳排放量-高碳排放强度类县域主要分布在东北三省;低碳排放量-高碳排放强度类县域主要分布在中国西北的西藏自治区、新疆维吾尔自治区和青海省,同时山西省境内也有较多分布。(3)整体看,中低收入、处于发展提速的中西部县域发展仍需预留一定的碳排放空间;对于高收入的东部县域,则要提出更高的减排要求。  相似文献   

3.
污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。  相似文献   

4.
污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。  相似文献   

5.
针对好氧堆肥过程中产生的二次污染问题,以牛粪和小麦秸秆为原料,探究了添加过磷酸钙(SP)和糠醛渣(FR)对户外条垛式好氧堆肥过程中氨气排放和氮素转化的影响.结果表明,添加过磷酸钙降低了堆体的pH,减少了19.65%的氨气排放量,但是其N2O排放量增加了20.8%;添加糠醛渣后堆肥的高温期延长了7 d,增加了69.59%的氨气排放量,但是其N2O排放量减少了68.79%.添加过磷酸钙后,NH4+-N增加了40%~80%,这可能是在升温期和高温期该处理的N2O排放高于对照的主要原因;酸解总氮降低了2.21%~13.71%,这说明添加过磷酸钙促进了有机态氮向无机氮的转化.添加糠醛渣降低了NH4+-N质量分数,增加了总氮的质量分数.添加过磷酸钙通过降低pH减少NH3排放;添加糠醛渣有利于提高总氮质量分数和减少N2o的排放.本研究结果可为好氧堆肥中氨气和氧化亚氮的减排提供参考.  相似文献   

6.
为了控制污水脱氮中N2O排放,在不同曝气强度下研究了好氧硝化段同时硝化反硝化(SND)系统的N2O排放特性,并采用PCR—DGGE技术分析微生物群落特征。结果发现,随着曝气强度的增强,系统总氮去除率下降,但脱氮中N2O—N所占比例则上升,实验中从低到高3个曝气强度下,总氮去除率分别为80.01%、65.28%和58.62%,脱氮中N2O—N所占的比例为1.89%、7.84%和9.20%。PCR—DGGE分析显示,和低曝气强度下相比中、高曝气强度下系统微生物群落发生明显变化,但中曝气强度和高曝气强度下系统微生物群落表现出较高相似性。这表明,不同曝气强度下系统N2O排放受到氮素转化和微生物群落变化的影响。适宜曝气强度不仅提高总氮去除率,还可有效控制N2O排放。  相似文献   

7.
为了控制污水脱氮中N2O排放,在不同曝气强度下研究了好氧硝化段同时硝化反硝化(SND)系统的N2O排放特性,并采用PCR—DGGE技术分析微生物群落特征。结果发现,随着曝气强度的增强,系统总氮去除率下降,但脱氮中N2O—N所占比例则上升,实验中从低到高3个曝气强度下,总氮去除率分别为80.01%、65.28%和58.62%,脱氮中N2O—N所占的比例为1.89%、7.84%和9.20%。PCR—DGGE分析显示,和低曝气强度下相比中、高曝气强度下系统微生物群落发生明显变化,但中曝气强度和高曝气强度下系统微生物群落表现出较高相似性。这表明,不同曝气强度下系统N2O排放受到氮素转化和微生物群落变化的影响。适宜曝气强度不仅提高总氮去除率,还可有效控制N2O排放。  相似文献   

8.
针对煤化工企业火炬气燃烧特点,设计了一套模拟燃烧装置,分别研究液化气添加量及燃烧温度对NO x的影响,并对火炬系统NO x的排放系数进行核算。结果表明,火炬系统NO x排放浓度和排放量随液化气添加量的增加而增大;同时研究发现,NO x与燃烧温度之间成正比关系,即温度升高有利于NO x的产生。根据核算结果,火炬系统NO x排放系数在0.099~0.185 kg/t之间,平均为0.139 kg/t。  相似文献   

9.
CuCoO_x/TiO_2催化氧化NO性能研究   总被引:1,自引:0,他引:1  
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能.XRD、TPR和BET分析表明,350℃焙烧的催化剂具有Cu-Co2O4尖晶石结构,比表面积大,对N0的氧化效果好.在空速为5 000 h-1,NO进口浓度500 mg/m3,含氧量10%的条件下,反应温度300cc时N0转化率可达79.5%,250℃时N0转化率接近50%.该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活.该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理.  相似文献   

10.
天津市秋季臭氧浓度影响因素及相关关系研究   总被引:3,自引:1,他引:2  
选择天津市秋季典型重污染时期2005年11月2~7日近地面大气O3、NO、NO2、CO、紫外线(UV)强度和温度等观测数据,研究O3浓度的时间变化特征及其与相关前体物、气象条件的相关关系.结果表明,在观测期间O3浓度存在明显的日变化周期,在13:00~14:00时浓度最大,夜间变化平缓;O3浓度与NO、NO2、NOx和CO等前体物呈较好的负相关关系;温度和UV与O3浓度密切相关,昼间O3与UV呈相同变化趋势,相关系数达0.71,O3浓度变化滞后于UV变化,将O3浓度与前1小时的UV对比分析,相关系数提高到0.81.  相似文献   

11.
用溶胶凝胶法合成了3种不同B位的钙钛矿催化剂,同时用X射线衍射(XRD)、比表面积分析(BET)、扫描电镜(SEM)、程序升温化学吸附(TPR)4种手段对催化剂进行了物理化学表征.从经济性和实际性考虑,本研究使用了清洁无二次污染的H2作为SCR的还原剂,同时控制了H2的加入比例,在小NO/H2比(1∶1、1∶5、1∶10)情况下,考察了3种催化剂的催化效率.由于实际燃煤烟气中含有大量的O2,因此,同时考察了高O2(O2/NO=100∶1)的加入对氧化还原反应的影响.从考察结果我们得知,在NO/H2为1∶1时,LaCoO3和LaNiO3的催化活性优于LaMnO3,达到80%.而在高H2/NO比时,则是LaMnO3的催化活性最高,达95%以上.O2的加入对氧化还原反应影响较大,温度高于250℃时,O2出现竞争性反应,消耗了大部分的还原剂,使得NO脱除率降低,而在250℃以下,O2的影响较小.  相似文献   

12.
利用2013—2017年珠三角城市空气质量监测站的大气常规污染物逐时监测数据,探究珠三角区域臭氧(O3)污染年际变化、季节变化、日变化特征。结果表明,珠三角O3浓度秋季高冬春低,在一年之内呈现2月、5月、9—11月从低到高3个峰值;在一天之内呈现昼高夜低的单峰结构,峰值大多出现在午后15:00时。珠三角中部城市超标天数较多,沿海城市超标天数较少,大部分城市每年O3超标天数逐渐增多。O3月变化和日变化与NO2呈现负相关。总体而言,NO2平均浓度越高的城市,O3昼夜爬升值越高。  相似文献   

13.
采用水热合成法制备了Ce掺杂MnFe2O4催化剂,用于低温选择性催化还原(SCR)脱硝.对催化剂晶型、脱硝性能和表面结构等进行分析,结果表明,Ce/(Fe+Mn)为0.5%(摩尔分数,下同)时催化剂表现出最优的SCR活性,80℃NO去除率可达100%;Ce/(Fe+Mn)分别为5.0% 和10.0% 时,催化剂80℃N...  相似文献   

14.
采用4组0.5 L的批式反应器,调节进水初始NH_4~+-N为100 mg·L~(-1),控制温度为30℃,DO为(2.00±0.20)mg·L~(-1),以葡萄糖为有机碳源,采用化学抑制法研究进水C/N分别为0、0.5、1.0和1.5时,单级脱氮系统的氮转化情况、N_2O排放量及N_2O排放途径。结果表明,反应器进水C/N从0升高至1.5,在6 h时系统TN去除率由14.5%增至23.5%,而系统N_2O排放量由180μg减至10μg,N_2O转化率由2.5%降至0.1%。随着进水C/N的升高,氨氧化菌(AOB)反硝化产生的N_2O排放量在3.6~11.7μg之间波动,而同步硝化-反硝化产生的N_2O排放量降幅明显,由176.8μg降至5.3μg。当C/N为较低的0和0.5时,同步硝化-反硝化对N_2O排放贡献率均达到85%以上,系统N_2O排放途径主要为同步硝化-反硝化;当C/N为较高的1.0和1.5时,AOB反硝化对N_2O排放贡献率为45.9%和26.5%,系统N_2O排放途径主要为同步硝化-反硝化和AOB反硝化作用。  相似文献   

15.
活性炭纤维(ACF)经硝酸处理后采用浸渍法制备了CeO2-CoO/ACF复合催化剂,测试了其在以氨气为还原剂的低温SCR过程中的催化活性,同时研究了金属氧化物浸渍顺序及负载量、催化剂煅烧温度、空速比(SV)、NH,/NO(摩尔比)、O2含量等因素对NO转化效率的影响。研究发现,负载量为10%的CeO2-CoO/ACF复合催化剂经煅烧后在120—240℃时具有很高的催化活性,并且在N0初始浓度为1000mg/m3、空速比(SV)为6000h~、NH3/NO为1.05、O:体积分数在3.0%时具有较高的NO转化效率。  相似文献   

16.
以生物质生物膜反应器(biomass bio-film reactor,BBFR)和复合垂直流人工湿地(integrated vertical-flow constructed wetland,IVCW)构成的组合系统来处理高氮寡碳微污染地表水,考察不同C/N比对组合系统脱氮效果的影响.实验结果表明,2#CW(2#湿地系统)的TN出水均值低于CW1#(1 #湿地系统),出水达到地表水环境质量Ⅳ级标准.C/N比对BBF系统的TN去除率有很大影响,而C/N比对硝酸盐氮去除率的影响并不明显.综合从碳源投加的经济成本因素和系统的反硝化效果来看,最优的C/N比为4.9.C/N=2.8时,1#CW对NO-3-N的去除率最高,为(71.88±15.70)%,并且与C/N> 2.8的几组情况有显著性差异(F3,56=21,p<0.05).在C/N=4.1时,2#CW对NO3--N的去除率为(92.83±11.26)%,与其他C/N比值下NO3-N的去除率差异显著(F3,56=4.34,p<0.05).C/N比的变化对出水剩余TN、NO3--N的影响情况比较一致.1#CW中出水TN和NO3--N浓度都是随着C/N比的增大而逐步增加;而2#CW中出水TN和NO3--N浓度都是随着C/N比的增大先减小,在C/N> 4.1时又有所增加.BBFR系统对COD的去除高于其对TN去除的贡献率.  相似文献   

17.
目前污水处理过程中产生温室气体的问题已经引起普遍关注。本文通过实验室小试,研究了不同污水水质条件下A2O工艺中N2O的产生特征,以及氧化亚氮还原酶编码基因nosZ含量对N2O产生量的影响。结果表明,在A2O工艺中的各单元均有N2O产生,其中厌氧池产生量最大,约占总产生量的32%~85%;A2O工艺产生的N2O主要通过逸散进入大气,少量随二沉池出水进入到环境中。N2O的产生量与污泥中nosZ的含量成负相关,而碳源和DO对含有nosZ基因的反硝化细菌有明显的影响,低DO环境和充足的碳源能够极大的促进其含量的提高,从而显著减少N2O的产生量。  相似文献   

18.
南京北郊春季地面臭氧与氮氧化物浓度特征   总被引:2,自引:0,他引:2  
2009年3—5月,采用NO-NO2-NH3分析仪和O3分析仪对南京市北郊大气O3、NO、NO2和NOx浓度进行连续观测,研究南京北郊春季大气臭氧与氮氧化物浓度变化特征。结果表明:O3浓度的日变化呈单峰型结构,白天较高,夜晚较低,在06:00左右出现最低值,14:00左右出现峰值,且工作日的O3浓度值明显高于周末的O3浓度值。NOx的日变化呈现双峰型变化规律,早上07:00左右出现第1个峰值,下午14:00—15:00左右达到最低值,午夜23:00左右出现第2个峰值。从3—5月份,NO浓度明显下降,3月份的变化幅度比较大;NO2浓度则明显上升,5月份变化幅度较大。3—5月NO与O3之间呈显著的负相关关系,4—5月NO2、NOx与O3呈显著的负相关关系。  相似文献   

19.
北京与伦敦空气中气态污染物的比对研究   总被引:3,自引:0,他引:3  
城市空气质量问题已经引起广泛关注.通过对中英2个大城市北京与伦敦 2004 年 8 月~2005 年12 月空气中气态污染物 O3、NOx、SO2 和 CO 浓度变化的分析与对比发现:参照世界卫生组织空气质最准则、欧盟空气质量标准、美国国家空气质量标准或国家空气质量二级标准,北京O3、NO2、SO2和 CO 浓度的超标天数或时数明显高于伦敦.观测期内,北京 O3、NOx、SO2 和 CO 浓度明显高于伦敦,平均值分别是 17.9±22.1×10-9、72.4±76.1×10-9、19.5±21.8×10-9、2 004.6±1 509.8×10-9与10.8±9.9×10-9、54,6±38.9×10-9、1.8±2.2×10-9、372.3±235.0×10-9.两城市 O3 统计日变化形式均表现为白天高、夜晚低,峰值出现在午后 14:00 左右,日较差分别为 31.5±30.9×10-9与 11.1±7.7×10-9;NO、NO2、SO2 和 CO 呈双峰态日变化,峰值出现在交通的早高峰与晚高峰附近.北京 O3 最高值出现在夏季,而伦敦出现在春季;但两城市NOx、SO2 和 CO 最高值均出现在冬季.北京与伦敦的NO2与 NO 呈显著线性相关,且斜率与截距十分相似,分别是 1.25 和 1.28 与 28.1 和 23.2;同时两城市 CO/NOx 比率明显高于 SO2/NO 分别为 14.0、4.5 与 0.13、0.03.由此可以判断:对于两城市空气污染问题,交通源的贡献要远大于点源;但点源也对两城市空气质量造成影响.此外,连续逆温的天气是造成重污染事件的原因.  相似文献   

20.
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能。XRD、TPR和BET分析表明,350℃焙烧的催化剂具有CuCo2O4尖晶石结构,比表面积大,对NO的氧化效果好。在空速为5000h^-1,NO进口浓度500mg/m^3,含氧量10%的条件下,反应温度300℃时NO转化率可达79.5%,250℃时NO转化率接近50%。该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活。该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号