首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
霾天气的频繁发生降低了武汉空气质量,明晰致霾污染物PM2.5的污染机理、污染时空分布特征、影响因素是科学认识和解决霾污染天气的重要前提。在全国大范围内开展PM2.5源解析的背景下,探讨其时空分布特征,厘清与气象因子的相互关系,是对源解析工作的响应,也是污染防治决策的科学依据。本文以2013─2014年武汉市10个国控点的PM2.5监测数据和中国地面气象交换站气象数据为基础,运用统计学方法,基于不同时间尺度和空间分布类型研究PM2.5污染分布特征,并探讨其与气象条件的相互关系。结果表明:(1)武汉市PM2.5污染表现出显著的时间分布规律。就年变化而言,PM2.5污染程度2014年(年均值121μg·m-3)2013年(107μg·m-3),且PM2.5污染主要为良好和轻度污染,季节尺度上冬季秋季春季夏季,月均值规律体现为4─9月优于10─翌年3月,以周为单位表现出显著的正周末效应,即周日周六周一周五周四周三周二;(2)武汉市ρ(PM2.5)的空间差异与区域类型、城市布局有关,工业区、居民区、交通区较风景区污染严重,二环和三环较一环严重;(3)ρ(PM2.5)月均值分布与降雨量、气温、平均风速、相对湿度呈负相关关系(P0.05),与气压呈正相关关系(P0.01),监测点S2、S3、S9与平均相对湿度相关性更显著。PM2.5污染的减轻与气象条件有一定关系,也离不开城市环境空气治理。  相似文献   

2.
为了探讨武汉市不同类型大气污染过程中大气污染物变化特征,分析对比了沙尘、秸秆燃烧和霾污染过程中大气污染物(SO2,NO2,CO,O3,PM2.5和PM10)的变化特征及其影响因素。使用HYSPLIT模式计算了不同类型污染过程中气团轨迹,并利用潜在源区贡献(potential source contribution function,PSCF)和浓度权重轨迹(concentration weighted trajectory,CWT)分析方法,揭示了武汉市不同类型污染过程中大气污染物的潜在源区分布及其贡献特性。结果表明,不同类型污染下大气污染物变化不同。沙尘天主要以PM10污染为主,平均浓度为408.8μg/m^3,是干净天的5.9倍,PM2.5/PM10仅为29%。霾过程中主要以PM2.5污染为主,平均浓度为182.8μg/m^3,是干净天的3.7倍,PM2.5/PM10为90.4%。秸秆燃烧过程中大气污染物浓度均不同程度地增加,其中PM2.5、PM10和SO2的浓度分别为100.2μg/m^3,155.4μg/m^3和23.7μg/m^3,是干净天的1.8倍,1.6倍和1.6倍。表明,不同类型污染下大气污染物的日变化不同,不同类型污染过程中大气污染物的潜在源区差异较大。沙尘期间大气污染物的主要潜在源区为安徽、河南南部、沙尘源区的内蒙古和甘肃等地区。霾过程中大气污染物的主要潜在源区为湖南东北部、湖北东部、安徽西南部、浙江西部、江西北部和河南南部。秸秆燃烧过程中大气污染物的主要潜在源区为安徽、江苏西南部和河南东南部。  相似文献   

3.
陈飞  秦传高  钟秦 《生态环境》2013,(12):1916-1921
采用化学质量平衡模型(CMB)对徐州市大气颗粒物中的多环芳烃(PAHs)进行来源分析,从而来确定各个源对大气的PAHs贡献值。主要通过利用大流量采样器配置PM10切割头在冬季和夏季对不同功能区,即生活区、工业区和旅游区采样大气中的可吸入颗粒物(PM10)样品,并用高效液相色谱法(HPLC)重点分析和研究了美国环保局(EPA)列出的16种PHAS优先污染物。研究结果表明:徐州市PM10污染比较严重,PM10污染质量浓度水平冬季是(288.81μg·m-3)大于夏季(276.34μg·m-3),特别是工业区,污染数值达到393.13μg·m-3。夏季的总PAHs质量浓度为22.89 ng·m-3,分别是生活区28.35 ng·m-3、工业区21.75 ng·m-3和旅游区18.58 ng·m-3。冬季的总PAHs质量浓度为306.29 ng·m-3,分别是工业区388.03 ng·m-3、生活区276.29 ng·m-3和旅游区254.28 ng·m-3。夏季和冬季情况下,旅游区的污染相对来说都是最低的PM10中多环芳烃的源解析结果为,煤烟尘污染源的全年贡献率为64.00%,冬季煤烟尘污染源的贡献率为66.51%,夏季煤烟尘污染源的贡献率为57.21%,说明煤烟尘是PM10中多环芳烃的主要贡献源,土壤尘次之,全年贡献率为24.90%,冬季为25.48%,夏季为28.97%,因此,扬尘和烟煤尘的污染是徐州市的PM10中PAHs的最主要来源。  相似文献   

4.
气象因素对城市空气污染具有重要影响。分析不同季节PM10质量浓度变化与气象因子之间的关系,建立模型进行颗粒物污染预测,可以为污染物治理提供科学依据。为了解兰州市PM10污染特征,2011年1月─2011年12月对兰州市可吸入颗粒物(PM10)进行了为期1年的监测,并利用监测数据和同期气象观测数据,分析了PM10的质量浓度与气象因素之间的相关性。结果表明:PM10的质量浓度与温度呈现负相关关系,温度越高,PM10质量浓度越低。当风向为NW和NNW时,PM10污染相对较轻;而当风向为NE和ENE时,PM10污染比较严重。兰州市属于典型的河谷城市,四面环山,气流闭塞,风速过小导致城区大气污染物不利于向城区外扩散。PM10的质量浓度与气压呈正相关,兰州市冬季气压较高,PM10质量浓度较大;夏季气压较低,PM10质量浓度较低。降水能够对环境空气中污染物起到清除和冲刷作用,对可吸入颗粒物去除作用显著。PM10在无降水日的平均质量浓度为263.47μg·m-3,所有降水日的PM10平均质量浓度为171.71μg·m-3,比无降水日降低34.83%。  相似文献   

5.
为研究京津冀地区冬、夏两季大气颗粒物质量浓度与水溶性离子组成特征,于2013年2月、7月对北京、天津、石家庄及4个国家大气背景点进行了PM2.5及PM10的采样,分析了质量浓度及9种水溶性离子,结果表明:(1)京津冀地区颗粒物污染冬季重于夏季,冬季污染水平石家庄天津北京,夏季污染天津、北京石家庄,区域内PM2.5与PM10之间有很好的相关性,相关系数r冬季为0.8796,夏季为0.8424,说明整个区域颗粒物污染有较为相近的来源,大气颗粒物污染表现出区域性特征;(2)京津冀地区PM2.5及PM10中的9种水溶性离子浓度规律为NO-3、SO2-4、NH+4Cl-、Ca2+K+、Na+F-、Mg2+.该地区水溶性离子污染冬季最重为石家庄,夏季则为北京;(3)在京津冀地区二次离子NO-3、SO2-4、NH+4是主要的污染离子,3种离子质量浓度总和在PM2.5、PM10中冬季分别占48.9%、27.8%,夏季分别占58.7%、48.5%.二次离子主要集中在PM2.5中,其对细离子浓度的升高起到直接作用,且二次离子的构成关系也在发生变化.整个区域向硝酸型污染转变,二次离子的季节分布也呈现区域特征,冬季NO-3离子质量浓度比重最大.夏季则为SO2-4;(4)粒径越小富集水溶性离子的能力越强,在PM1中分布了50%以上的水溶性离子,73.9%—94.8%的水溶性离子分布在PM2.5中.  相似文献   

6.
“十一五”期间安庆市环境空气质量状况分析   总被引:2,自引:0,他引:2  
根据安庆市环境空气质量监测数据,对"十一五"期间安庆市环境空气质量状况进行了分析,并与"十五"期间进行了比较。结果表明,"十一五"期间安庆市环境空气质量优良率总体呈下降态势,首要污染物主要为PM10,老城区的污染重于开发区。采暖期SO2及PM10的质量浓度高于其它月份,NO2测值随季节变化不明显,2009年起各种污染物浓度有所下降。与"十五"比较,"十一五"期间PM10的质量浓度大幅下降,SO2及NO2均有不同幅度的上升,环境空气质量优良率比"十五"略有下降。  相似文献   

7.
北京市冬季气溶胶的污染特征及来源分析   总被引:4,自引:0,他引:4  
于2004年1月在中国科学院大气物理研究所气象观测塔院内进行了PM10的采样分析.结果表明,北京市冬季气溶胶浓度有明显的昼夜变化特征,峰值与交通和生活排放源有关;气溶胶元素浓度分析表明,北京市除受局地排放源影响外,还受远距离输送的影响;与1983 年相比,北京市冬季人为污染明显增加, 自然沙尘污染有减少的趋势.  相似文献   

8.
天津城区大气气溶胶质量浓度分布特征与影响因素   总被引:9,自引:0,他引:9  
姚青  蔡子颖  张长春  穆怀斌 《生态环境》2010,19(9):2225-2231
根据中国气象局天津大气边界层观测站2009年的气溶胶观测资料和同期气象资料,对天津城区PM10和PM2.5质量浓度变化特征,及其与气象条件的相互关系进行研究,结果表明:PM10和PM2.5年均质量浓度为153.24和68.78μg·m-3,其日均值超标率近半,表明南部城区尤其是交通干道附近气溶胶污染较为严重;PM10和PM2.5质量浓度逐月变化呈现明显的冬季高、夏季低的特征,其日变化特征呈明显的双峰型,早晚污染高峰主要受交通源影响;气象条件对气溶胶质量浓度作用显著,气溶胶质量浓度与气温正相关,相对湿度的增高易导致细粒子吸湿性增长,但高湿状态下易引起降水有利于气溶胶的湿清除,西南气流和偏北风是PM10和PM2.5高浓度的主要影响风向,静小风易造成气溶胶堆积,高风速可引起PM10排放增多,但对PM2.5影响不大。  相似文献   

9.
对石家庄市2016年1月18—22日出现的PM_(2.5)污染过程进行研究,选择3个不同地区采用中流量采样器分别采集PM_(2.5)和PM_(10)样品,测定PM_(2.5)质量浓度及其化学组分(含碳组分、水溶性离子和无机元素),分析PM_(2.5)污染天气的污染特征和引起污染的气象因素,结合后向轨迹模型(HYSPLIT)分析污染的主要潜在源区。结果显示,在采样期间3个点的PM_(2.5)平均质量浓度分别为113、131和119μg·m-3,PM_(2.5)浓度高值出现在早晨和午夜,冬季京津冀地区农村散煤燃烧也是大气污染的主要原因。有机碳(OC)最大质量浓度值为218.37μg·m-3,无机碳(EC)最大质量浓度值为21.22μg·m-3。污染过程中3个点的地壳元素(Na、Ca、Mg、Al、K和Fe)质量浓度变化范围为27.19~60.03μg·m-3,占总无机元素的96.5%,表明交通源、道路扬尘和煤炭燃烧是此次石家庄市PM_(2.5)污染的主要贡献源类。较高的相对湿度和弱风速也会加速二次粒子的生成和颗粒物吸湿增长。潜在源分析表明,石家庄市PM_(2.5)污染主要受来源于北京和天津的气团影响,同时潜在源贡献(PSCF)分析表明河北省是影响石家庄市环境空气质量的最主要潜在源区。  相似文献   

10.
为了解秋冬季室内外空气颗粒物PM10、PM2.5以及其有机碳和元素碳的污染特征,于2009年10月及12月对武汉大学医学部学生宿舍室内、外PM10、PM2.5进行了两周连续采样。结果表明:秋季室内PM10和PM2.5的平均浓度分别为121.8和91.3μg/m3,室外为153.9和104.2μg/m3;冬季室内PM10...  相似文献   

11.
通过研究遂宁市环境空气质量变化趋势、城区空气颗粒物组成及浓度变化,系统分析了遂宁市雾霾天气的污染状况及成因,并横向比较了四川省内各城市的空气质量.研究结果表明,细颗粒物(PM2.5)是遂宁市环境空气中的主要污染物.2012年遂宁市大气中PM2.5浓度值为35—119μg·m-3,平均值为68μg·m-3.2013年1—4月,PM2.5浓度值为21—120μg·m-3,达标率不到50%.尤其在2013年3月,PM2.5/PM10由62.0%—87.2%降低为45.3%.由此判断遂宁市环境空气质量主要受细颗粒物类型、气象条件以及大气污染物长距离迁移等因素影响,其中细颗粒物的最主要来源为机动车尾气排放,并提出了细颗粒物污染防治的对策措施.  相似文献   

12.
为研究春运期间北京市PM2.5和气态污染物的污染特征,根据35个空气监测子站周边环境类型的不同将北京市划分为城区、郊区、对照区和交通密集区.结合春运期间的人为活动,比较分析各类污染物在各区域的日均浓度变化特征;将PM2.5日均浓度与SO2、NO2、CO、O3日均浓度及北京市的日均温度、相对湿度、风级进行相关性分析.结果显示,春运期间北京市PM2.5污染最严重,超过《环境空气质量标准》二级标准的天数占45%;PM2.5日均浓度变化趋势与春运客流量变化具有较好的一致性;各区域PM2.5、SO2、NO2和CO的日均浓度均符合交通密集区城区郊区对照区的分布,而O3的情况为对照区郊区城区交通密集区;各区域PM2.5浓度分别与该区域SO2、NO2、CO浓度呈正相关,与O3浓度呈负相关;各区域PM2.5浓度与温度未见相关性,与相对湿度呈正相关,与风级呈负相关.本文的研究结果表明,交通运输、烟花燃放和气象因子对春运期间PM2.5的污染特征影响较大.  相似文献   

13.
采集太原市3个不同功能区夏季和冬季环境空气样品,使用色谱-质谱仪测定挥发性有机物(VOCs)的组成,分析VOCs浓度变化和日变化特征,计算臭氧生成潜势(OFP),利用特征比值法和正定矩阵因子分析法(PMF)研究环境空气中VOCs的来源.结果表明,观测期间太原市环境空气中VOC总浓度变化范围为(36.27—210.67)μg·m~(-3),夏季和冬季VOCs化合物平均质量浓度为49.73μg·m~(-3)和205.19μg·m~(-3),冬季环境空气中VOCs浓度是夏季VOCs的4.13倍;VOCs日变化受到机动车排放和光化学反应显著影响,且夏季影响大于冬季;夏季OFP最大的物种为烯烃类化合物,冬季OFP最大的物种为芳香烃类化合物.太原市环境空气中VOCs主要包括五类污染源,分别为燃煤源28.10%、机动车源27.41%、挥发源22.90%、液化石油/天然气源14.90%和植物源6.69%;不同功能区主要污染源存在差异,太原市夏季工业交通区最主要排放源为燃煤源,居民商业混合区和居民交通区受燃煤源和机动车排放源共同影响,冬季太原市燃煤源是环境空气中VOCs的最主要污染源.  相似文献   

14.
北京市区域城市化程度与颗粒物污染的相关性分析   总被引:4,自引:0,他引:4  
城市化程度的提升带来严重的资源环境问题,尤其是空气污染问题,严重影响了人类的健康。大气中的PM2.5等颗粒物已经成为影响我国城市空气质量的主要污染物。现有研究多数是对于多年来多地区的宏观研究,缺乏对于典型地区的具体数据报道。通过分析北京市PM2.5和PM10的质量浓度与不同城市化程度地区的相关关系,探索城市化程度对PM2.5等颗粒物浓度的影响。选取北京市7处具有代表性空气质量监测点,于2013年7月至10月对PM2.5和PM10的质量浓度进行连续4个月的实时监测,结合《北京市区域统计年鉴》中的城市化指标数据,包括常住人口密度、地区生产总值和林木覆盖率,对数据进行变化趋势分析、Pearson相关分析和回归分析。研究结论表明:由于北京市不同区域城市化程度不同导致颗粒物污染状况不同,每个区域的PM2.5与PM10的质量浓度虽有差异但均显著相关,PM2.5的质量浓度约占PM10的质量浓度的60%,PM2.5是PM10的主要组成成分。城市化程度与PM2.5等颗粒物浓度有明显的关系,PM2.5等颗粒物浓度与地区生产总值和林木覆盖率显著相关,与地区生产总值呈正相关,与林木覆盖率呈负相关;与常住人口密度呈正相关趋势但并不显著相关。其中,PM2.5的质量浓度与地区生产总值的相关系数为0.875,与林木覆盖率的相关系数为-0.838;PM10的质量浓度与地区生产总值相关系数为0.947,与林木覆盖率相关系数为-0.775。总体来看,PM2.5等颗粒物浓度随城市化程度的提高而增加,北京市区域城市化程度与颗粒物污染情况关系明显。我国在快速发展城市化的同时,应关注环境与经济相协调。调整产业结构,增加植被绿化,控制污染源将有助于减少北京市大气中颗粒物的污染程度,为我国的城市化进程提供相应的支持和保障。  相似文献   

15.
张敬 《环境生态学》2021,3(5):65-69
本研究利用2020年夏季沈阳地区环境空气细颗粒物(PM2.5)、臭氧(O3)、二氧化氮(NO2)和二氧化硫(SO2)小时浓度数据,计算逐时累积速率,并通过回归拟合分析,优选小时浓度及累积速率时间变化模型,对比分析不同污染物累积特征,同时分析沈阳不同污染物浓度之间的相关性,以期为城市环境空气污染控制提供基础的数据支撑,对...  相似文献   

16.
应用UNMIX模型解析长春市大气中PM10来源   总被引:1,自引:0,他引:1  
大气中可吸入颗粒物(PM10)是影响大气能见度、气候变化以及人体健康的重要污染物,研究大气中PM10的污染来源对于了解城市中大气的污染状况和制定大气污染物防治措施具有重要的意义。选择长春市的净月公园、劳动公园、君子兰公园、体育学院、儿童公园、客车医院、工商学院和邮电学院作为受体采样点,于2011年9月至2012年2月期间,采用KC-120型中流量PM10/TSP采样器(青岛崂山应用研究所)进行大气中可吸入颗粒物PM10的采样,共采集40个受体样品。样品经预处理后,采用电感耦合等离子体质谱法分析了样品中的Be、V、Cr、Mn、Co、Ni、Cu、Zn、Mo、Ag、Cd、Sb、Ba、Tl、Pb、Na、Mg、K、Ca共19种无机元素,将经过标准化后的760个数据代入EPA UNMIX6.0软件对长春市大气中PM10进行源解析研究,其中,Min Rsq=0.89(89%的数据方差可由该模型解释),Min Sig/Noise=2.50。结果表明:长春市大气中的PM10主要有3个来源:源1为燃煤尘或工业扬尘,贡献率为19.5%;源2为机动车尾气或土壤风沙尘,贡献率为13.1%,源3为城市综合扬尘和其他未知尘源,贡献率为67.4%。对这3个源进行相关性分析,3个源间的相关系数并不是理论值0,而是在-0.553~0.345间变化;源1和源3间相关性最大,相关系数为0.553;其次是源1与源2,为0.345。由此说明,长春市的PM10污染是多种因素综合作用的结果。将UNMIX模型的解析值与测量值进行回归分析,发现总物种的解析值与测量值间具有良好的线性正相关关系(r2=0.98),每个物种的解析值与测量值间的相关系数为0.713~0.980,相关性强,二者拟合效果较好。  相似文献   

17.
城市大气污染物来源特征   总被引:11,自引:0,他引:11  
以北京市为案例,介绍一种包括污染物排放清单建立、环境空气质量模拟及区域环境影响分析等方法在内的城市大气污染物来源特征分析的整体技术方法,从而确定城市大气污染物的排放分布及浓度分布特征、行业排放分担率及浓度贡献、地区排放分担率及浓度贡献以及区域污染对城市环境空气质量影响等多方面特征,为城市大气污染的控制决策提供必要的理论支持。对北京市的研究结果表明:对PM10,扬尘和工业为主要当地污染源;对SO2,采暖和工业为主要当地污染源;对NOx,交通和工业为主要当地污染源;对3种主要大气污染物,石景山、朝阳南等工业区以及老城区对北京市的大气环境造成重要影响,为需要优先控制的地区;北京市周边污染源对北京环境气质量有较大影响,其中RM10的影响最大(高达47.3%),北京市应同时加强对局地污染与区域污染的控制。  相似文献   

18.
利用2004年乌鲁木齐城区(以天山区为例)PM10日平均浓度和气象要素观测资料,对不同季节PM10浓度变化特征、不同级别污染日数进行统计分析.同时,结合环境扫描电镜/X射线能谱(ESEM-EDX)对不同季节的颗粒物的形貌及来源进行了初步探讨。结果表明2004年PM10浓度变化为:冬季>秋季>春季>夏季;冬季出现4级以上污染日数最多,占39.5%;夏季最为洁净,好于2级的日数占到76.1%.PM10和气象因子的相关分析表明浓度与风速成正比,与降水成反比,与温度,相对湿度和逆温层厚度相关比较复杂,有时成正相关,有时呈负相关。颗粒物的形貌在不同季节特征明显,冬季颗粒物多呈圆球形,春季形貌不规则,夏季既有圆球形又有不规则形貌的颗粒,而秋季颗粒物多呈链状.  相似文献   

19.
为研究天津清洁站点团泊洼不同季节大气污染物的污染特征和可能来源区域,利用HYSPLIT模型和全球资料同化系统(GDAS)气象数据,采取聚类方法对2012年12月—2013年11月期间抵达天津团泊洼的气团轨迹进行模拟并按不同季节分类。结合该期间NO2和SO2日均浓度监测数据,分析了不同季节气流轨迹对团泊洼污染物浓度的影响。利用潜在源贡献(PSCF)因子分析法和浓度权重轨迹(CWT)分析法分别模拟不同季节NO2和SO2潜在源的贡献作用和浓度权重轨迹。结果表明,不同方向气流轨迹对团泊洼NO2和SO2潜在源区分布的影响存在显著差异。团泊洼NO2和SO2日均最高浓度值对应的气流轨迹均集中在冬季和秋季。冬季日浓度最大值分别为115和179μg·m-3,气流主要来自团泊洼的西北方向;秋季日均浓度值分别为81和116μg·m-3,气流主要来自西北和东南方向。团泊洼NO2和SO2的PSCF与CWT分布特征类似,最高值主要集中在北京和天津周边、河北省的煤炭工业区附近,是团泊洼这2种污染物最大的潜在源区。与PSCF分析法相比,CWT分析法能定量模拟潜在源区污染物的浓度数值,而且采用CWT法模拟的各季节潜在源区均比PSCF法的模拟区域更为集中,有助于更精确确定污染物的潜在源区。  相似文献   

20.
以往的研究较多关注于城市环境空气PM_(2.5)的重金属污染特征和健康风险,而以交通源为主的相关分析较为匮乏。为探索高速公路环境空气PM_(2.5)中重金属季节变化特征,评价高速公路工作人员健康风险,于2018年3-10月分4次集中采集南昌市周边3条高速公路(昌樟、昌铜和温厚)服务区、收费站中环境空气的PM_(2.5)样品,运用电感耦合等离子体质谱联用仪(ICP-MS)监测了PM_(2.5)中6种重金属(Cu、Zn、Pb、Cd、Cr和Ni)质量浓度,分析其季节变化特征,并利用地累积指数法(Igeo)、美国环保局推荐的健康风险评价模型,对环境空气PM_(2.5)中6种重金属的污染特征及人体健康风险进行评价。结果表明高速公路服务区和收费站环境空气PM_(2.5)质量浓度的季节变化特征表现为春季秋季夏季,PM_(2.5)中不同重金属元素质量浓度的季节变化表现出显著性差异。总体上,不同季节PM_(2.5)中重金属质量浓度表现为ZnPbCrCuNiCd,其中Cr的平均质量浓度为4.07×10~(-2)μg·m~(-3),远高于城市水平。地累积指数评价结果表明6种重金属均受到不同程度的交通源污染,其中Zn和Cd的污染程度分级为严重污染,而Cu、Cr和Ni在秋季表现出更为严重的污染程度。健康风险评价结果表明,高速公路收费站和服务区环境空气的PM_(2.5)中重金属不存在非致癌风险,而致癌风险评价中,PM_(2.5)中Cr的致癌风险评价值超过阈值10~(-4),具有致癌风险,Ni的致癌风险评价超过10-5,具有潜在致癌风险。环境空气PM_(2.5)中重金属的污染特征及致癌风险均表现为秋季高于春季和夏季,交通源引起的大气Cr和Ni污染应受到重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号