首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
除饱和砂土液化外,饱和粉土地震液化问题也是岩土地震工程中一个重要的研究课题.饱和粉土地基的地震液化及变形可以采用多种地基加固方法防治,碎石桩技术是常用方法之一.碎石桩复合地基的抗液化效应,主要是增加桩周土体的密度、利于桩体的排水以及由桩体分担地震水平剪应力(桩体减震作用).但由于粉土的土质特性,粉土-碎石桩复合地基的抗...  相似文献   

2.
针对阿喀公路AK-3标段饱和大厚度砂土地基存在的地震液化问题,虽然工程中采用强夯法处理但抗液化检测表明并不能解决地基液化。碎石桩是一种有效的地基液化处理措施,但采用经济的长短碎石桩在处理饱和大厚度砂土地基中抗液化性能评价的相关研究较少。本研究提出了经济、合理的长短碎石桩加固大厚度砂土地基的方案,基于弹塑性动力固结理论和三维动力固结有限元程序FEMEPDYN,对比分析了天然地基和长短碎石桩加固地基的震陷、动孔压分布及超静孔压比。研究结果表明,采用长短碎石桩加固处理后的饱和大厚度砂土地基震陷降低了86. 7%,动孔压降低了89. 3%,超静孔压比降低了89. 5%,路基两侧长碎石桩对地震波传播具有一定的屏蔽效应。长短碎石桩加固方案对砂土地基抗液化效果明显,长短碎石桩处理饱和大厚度砂土地基是一种经济有效的处理措施。  相似文献   

3.
碎石桩处理液化地基抗液化研究现状及存在问题   总被引:3,自引:0,他引:3  
就目前国内外碎石桩处理液化地基抗液化理论、动力分析以及液化判别等方面的研究作简要的归纳和评述。在加固机理研究方面,主要认为碎石加固砂土有以下几种作用:(1)挤密作用;(2)振密作用;(3)排水减压作用;(4)预震作用;(5)加筋作用。其次,在理论研究方面如排水效应和桩体效应方面的研究也取得了长足进展,已经从总应力法深入到有效应力法,从只对孔压的研究发展到对水土共同作用的研究。并且随着计算机的发展,数值计算为复杂条件下的问题解答开辟了一个新的途径,现在已经可以模拟地震时土体的变形和孔压变化情况。但是在碎石桩处理液化地基的判别标准研究方面发展较慢。最后,对高速公路碎石桩复合地基抗液化研究方面的一些不足之处提出了解决的思路,主要包括:(1)上部荷载对复合地基的影响;(2)碎石桩处理深度设计时应考虑的影响因素;(3)碎石桩加固区与周围环境的相互作用;(4)考虑碎石桩排水、应力集中和附加应力共同影响下的液化判别标准。  相似文献   

4.
抗震液化的总应力合成分析方法   总被引:2,自引:0,他引:2  
基于总应力动力分析法,运用二维显式有限差分程序FLAC对某大坝在地震荷载作用下的动力响应进行模拟分析。编制了分析大坝液化的数值模型的分析模块并与FLAC接口。分别考虑了水平、竖向地震荷载以及两个方向的耦合和不同水位深度对大坝动力特性的影响,得到了大坝在地震荷载作用下液化区域和位移矢量的分布态势。  相似文献   

5.
刚性桩复合地基在建筑结构中已得到广泛应用,但对其地震作用下的动力响应研究还不够充分。采用上海市《建筑抗震设计规程》8度罕遇地震的规范标准反应谱拟合生成人工地震波,以软土场地中的某10层钢筋混凝土框架结构为对象,将土体自由场变形和上部结构惯性力对桩身内力的影响分开考虑,提出一种拟静力简化计算方法,分析刚性桩复合地基的地震响应。并建立刚性桩复合地基-筏板-上部结构体系整体有限元模型,利用数值方法进行动力时程分析,验证了拟静力方法的合理性。进一步分别计算了自由场位移对桩基的作用、刚性桩复合地基-筏板-上部结构体系整体地震响应以及桩筏基础地震响应。结果表明:拟静力方法与数值方法较为吻合,复合地基的桩身内力和筏板底加速度峰值均小于桩筏基础,褥垫层对地震波具有滤过作用,显著减轻了地震的作用效应。  相似文献   

6.
液化场地桩基动力响应是岩土地震工程领域重要的研究课题,而研究液化场地桩基动力响应有效的方法包括大型物理模型试验和数值模拟。鉴于此,针对已完成的振动台试验,采用 FLAC3D有限差分计算程序,建立了液化场地桩?土动力相互振动台试验数值模型。在数值模拟中,承台采用实体单元,桩采用桩单元,柱墩采用梁单元, 考虑液化效应的饱和砂土采用 Finn 模型,粘土采用 Mohr?Coulomb 模型。模型边界采用自由场边界,采用弹簧?滑块?裂缝单元模拟桩?土界面。通过对比振动台试验结果表明:建立的有限差分数值模型能够再现结构和地基的动力响应,进而验证了数值模型的可靠性。同时,分析了引起数值计算结果与试验结果差异的主要原因。所采用的数值分析方法对类似布置的桩?土相互作用数值分析提供参考与借鉴。  相似文献   

7.
作为新型的深水海洋基础形式,吸力式沉箱基础不仅要承受海洋平台结构及自身重量等竖向荷载的长期作用,而且往往承受波浪等所产生的水平荷载及力矩荷载分量,其承载特性是海洋工程结构设施建造与设计中的一个关键技术问题,但目前这种新型基础的工作性能评价与设计理论远远不能满足工程实践的需要。为此,本文以大型通用有限元分析软件ABAQU S为平台,数值实现基于位移控制的Sw ipe试验加载方法,分析了完全不排水条件下不同的水平荷载作用点吸力式沉箱基础的承载特性及V-H破坏包络面。同时,对完全不排水条件下吸力式沉箱基础在垂直上拔荷载V、水平荷载H和力矩M共同作用下的承载特性进行了三维有限元分析,数值实现了荷载-位移控制搜寻方法,确定了复合加载作用下吸力式沉箱基础的V-H-M三维破坏包络面。  相似文献   

8.
以广州仑头—生物岛沉管隧道为背景,采用二维动力有限元模拟方法,分析了地震荷载作用下沉管隧道地基的动力响应,得到了地震荷载作用下地基土的动剪应力分布;通过对试验资料的分析,得到了沉管隧道地基砂垫层的抗液化剪应力,以此分析了沉管隧道地基土在地震荷载作用下的液化可能性,并提出了相应的抗液化措施,可供沉管隧道的抗震设计参考。  相似文献   

9.
桩基础作为一种重要的深基础形式,广泛应用于近海桥梁、海上风电、港口码头等工程中,然而近年来发生的地震中,出现了大量伴随液化侧向扩展的桩基础破坏实例,引起岩土地震工程界的广泛关注。国内外学者采用模型试验、数值模拟、简化分析方法等手段展开研究,成果丰硕,通过对桩基础地震反应深入系统的分析,深化了对桩基础抗震性能的理解,但由于模型试验方法与测试技术的不同、数值模型与分析方法的差异性、桩-土-结构地震反应的复杂性等原因,围绕液化侧向扩展场地-桩基础的抗震研究仍需大量具有实际意义的工作。通过查阅震害调查资料,阐述了液化侧向扩展及桩基础震害现象,然后围绕振动台试验中实现液化侧向扩展的方式、关键试验测试技术等方面进行总结,针对已开展的倾斜液化自由场及桩基础1-g振动台试验和离心机试验做简要介绍。回顾了液化侧向扩展大位移分析方法、桩-土精细化数值模拟方法、简化分析方法的研究现状与进展,着重对有限元方法中的桩-土界面模拟、饱和两相介质u—p格式高效数值计算方法进行探讨。对比了国内外规范对液化侧向扩展场地桩基础抗震设计的要求。指出现有研究中的不足,并对今后研究中需要重点关注的问题进行阐述。  相似文献   

10.
风力发电结构在地震情况下易发生整体倾覆、塔筒弯折等破坏。若同时考虑风荷载作用,则结构破坏风险增加。采用APDL命令流建立某沿海风电场1.5 MW级风电结构的"叶轮-塔筒-桩基"一体化有限元模型。通过单桩刚度折减,计算不同液化情况下的风电结构自振特性及结构地震响应。采用实测地震波和基于自回归法模拟获得的风速时程,计算风电结构在地震荷载单独作用以及地震荷载和风荷载共同作用两种情况下的动力响应。结果表明,随着液化程度的加深,轮毂水平位移和最不利单桩内力逐渐增大,在中等液化情况下塔筒底部应力出现最大值。考虑风荷载后,轮毂水平位移、塔底应力和最不利单桩内力均有所增加,其中背风面塔底应力和最不利单桩内力增加最为明显。  相似文献   

11.
云南粉土的动力特性试验研究   总被引:3,自引:0,他引:3  
粉土是一种具有特殊工程性质的土,由粉土液化引起的工程震陷造成的危害极大。根据云南粉土的室内共振柱试验,得到了归一化处理后的G/Gm ax~γ/rγ和D~γ曲线,并运用修正后的双曲线模型进行了拟合分析。根据室内振动三轴试验,得出不同固结比和不同固结压力下的土的动强度与振动次数的试验曲线,发现动强度与破坏振次间符合较好的乘幂关系,动强度与固结比之间符合较好的二次抛物线关系;分析不同围压下孔压与破坏振次的试验曲线规律,发现可以用指数函数进行拟合。结果可供该类土的动力特性研究参考。  相似文献   

12.
粉土动力特性研究综述   总被引:6,自引:0,他引:6  
粉土是一种具有特殊工程性质的土,粉土中砂粒、粉粒、粘粒都存在,这3种粒种分别具有不同的性质。总结这3种粒种对粉土动模量和阻尼的影响,得到了粉土模量阻尼的表达式以及粉土动力特性符合土体非线性和滞后性的一般规律。液化是一种特殊的强度问题,国内外预测液化可能性的方法主要有经验法、剪切波速法、Seed法、有限元法等。室内研究主要集中在粉土动力特性试验研究上,研究了各种因素影响下粉土液化特性,包括3种不同的粒种对粉土液化特性的影响,尤其是粘粒含量影响下粉土液化特性。粉土的动孔压响应与砂土有很大区别,这也可以用粉土特殊的颗粒结构组成来分析。最后,分析了粉土液化机理,并对粉土进一步研究提出了几点看法。  相似文献   

13.
工程实践证明强夯置换法对于软弱地基的处理具有较好的加固效果,但目前尚无成熟的设计施工方法。本文以四川九寨黄龙机场高填方地基处理工程为背景,介绍了强夯置换法加固软弱土层的现场试验,对实测夯沉量、地表隆起量等试验结果进行了分析。同时,运用动力触探测试及室内土工试验等手段对夯后地基的加固效果进行了检测分析。综合试验及检测结果表明,应用此法处理机场工程软弱地基达到了预期的加固效果,原地面以下6m范围内动探击数均大于5击,物理力学指标也均有相当改善。目前,该试验成果已用于指导机场地基处理与高填方填筑体施工,对于其它类似工程亦有一定的借鉴意义。  相似文献   

14.
为研究不同承台形式斜直交替群桩?土?结构在地震互相作用, 利用FLAC3D有限差分软件作为研究工具,采用El Centro地震波作为动荷载。分别建立了斜直交替群桩?土?结构的低承台、高承台数值模型。并对地震作用下可液化土体的孔压比变化、桩基的受力与位移、桥墩顶部的位移进行分析研究。研究结果表明:在地震作用下,土层中孔隙水压力分布是自上而下逐渐增大。振动加速度峰值时部分土体由于发生剪胀孔压出现瞬时负值。砂土层中桩基中部区域容易产生液化现象。同一模型中,直桩的最大弯矩小于斜桩的最大弯矩。在低承台模型中,直桩和斜桩的最大水平位移均发生在桩基顶端,直桩的竖向位移沿埋深是一恒值,而斜桩的竖向位移沿埋深是变化的。在高承台模型中,斜桩的水平位移沿埋深不再是单调变化,最大值发生在砂土层中。高承台模型中斜桩和直桩的竖向位移和水平位移均明显大于低承台模型桩体。两个模型的桥墩顶部最大水平位移出现的时刻基本相同。  相似文献   

15.
海洋深水软土地基筑堤基础处理通常采用爆破挤淤法及塑料排水板排水固结法。排水板排水固结法主要工序有土工布、碎石垫层铺设、塑料排水板打插,其中碎石垫层作为滤水层,对基础处理效果有较大的影响。根据舟山钓梁工程施工情况看,目前塑料排水板打插工艺相对较成熟,而土工布、碎石垫层铺设工艺则尚在研究探讨中,因此重点对舟山市钓梁围垦工程土工布、碎石垫层铺设的施工工艺进行探讨,为今后发展提供参考。  相似文献   

16.
软土场地碎石桩因具备桩体侧向变形大、超孔隙水压力消散慢的问题,导致出现基础沉降大、土体固结排水速度慢等工程病害。路堤下采用加筋碎石桩复合地基是处理软土场地的主流方法。本文采用二维有限元方法,建立考虑路堤填筑过程的软土场地路堤-加筋碎石桩复合地基数值模型,探讨了加筋碎石桩复合地基承载力的影响因素。基于达西定律和比奥固结理论,分析高地下水位场地条件下加筋体刚度和桩数对加筋碎石桩复合地基工作状态的影响规律。研究表明:增大褥垫层厚度和减小褥垫层模量均能够提高桩土应力比,改善桩顶应力集中的问题。与传统碎石桩相比,高地下水位条件下加筋碎石桩复合地基中超孔隙水压力消散速率快,桩数增加可以有效提高复合地基排水速率。  相似文献   

17.
振动频率对饱和砂土液化强度的影响   总被引:2,自引:0,他引:2  
采用"土工静力-动力液压三轴-扭转多功能剪切仪"对饱和砂土进行了一系列动三轴实验,探讨了振动频率对液化强度数值的影响程度。在1.0、1.5固结比和0.05、0.10、1.00 Hz振动频率条件下,针对相对密实度分别为70%、28%的密砂和松砂进行了100、200、300 kPa围压和100 kPa围压条件下的液化强度实验。实验结果表明,饱和密砂和松砂在各种固结条件下,液化强度随着振动频率的增大而增大,相同破坏振次时,各种实验条件下的液化强度与振动频率的关系在双对数坐标上均符合线性关系;振动频率由0.05 Hz变化到1.00 Hz时,液化强度相差达25%以上;动强度指标φd值随振动频率的增大而增大,最大相差12.2%;随着振动频率的增大,砂土达到液化破坏所需的时间明显缩短;振动频率对松砂液化强度的影响比对密砂的影响更为显著。  相似文献   

18.
南京粉质粘土与粉砂互层土为粉质粘土与粉细砂交互沉积,呈现“千层饼”状外貌;南京粉细砂是一种以片状颗粒成分为主的粉细砂,与通常的圆形颗粒石英砂有一定区别,片状颗粒成分使得南京粉细砂具有各向异性的性质。通过南京粉质粘土与粉砂互层土及粉细砂对比液化试验,对其试验成果进行分析,从中发现:无论是偏压固结还是均压团结,当固结压力α_2=100 kPa时,南京粉质粘土与粉砂互层土的液化剪应力比比南京粉细砂的大得多;而当固结压力α_2=200kPa时,两种土的液化剪应力比相当接近。因而,对于重大工程应该慎重考虑它们的液化可能性。  相似文献   

19.
地震荷载作用下的桩基动力反应在工程设计中越来越受到重视。基于桩-土-结构整体动力有限元法,结合工程实例,建立有限元分析模型,设置粘弹性人工边界,研究水平地震荷载作用下地基土层特性变化对桩基抗震反应的影响。着重探讨了上软下硬和上硬下软两种土层分布情况下,软硬土层相对厚度及弹模比变化对桩基抗震反应的影响。结果显示:桩基和筏基交接处桩顶截面和软硬土层分界处的桩身截面均可能是内力最大截面,桩顶截面和软硬土分界处桩身截面都应是设计需考虑的控制性截面,地基土层特性变化对于桩基弯矩的影响较剪力的影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号