首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
为了研究人工湿地中植物根际、污水水质和深度等对细菌群落结构特征分布的影响,利用高通量测序技术,对人工湿地中芦苇(Phragmites communis)、香蒲(Typha orientalis Presl)2种植物根际3个不同深度细菌群落特征进行了研究.细菌群落丰富度和多样性研究结果表明,芦苇根际细菌群落丰富度和多样性均大于香蒲根际,细菌在芦苇根际周围可以更好地生存;同一植物根际细菌的丰富度和多样性随着深度的增加逐渐减少.相似度和差异性分析结果表明,相同植物根际细菌群落结构相似度较高,而不同根际群落结构有一定的差别.优势细菌菌群分析结果发现,细菌群落在门类水平上达到13门以上,优势细菌种群均以变形菌门、酸杆菌门、绿弯菌门、厚壁菌门为主,相对丰度约为55%~78%;纲类水平也达到20纲以上,主要有α-变形杆菌纲、β-变形菌、δ-变形菌纲、γ-变形菌纲、芽孢杆菌纲、酸杆菌纲、相对丰度达到50%以上,植物根际富集的主要纲类细菌是β-变形菌纲.影响细菌群落结构丰富度和多样性的主要环境因素是营养物浓度、植物、采样深度和温度.  相似文献   

2.
张拓  徐飞  怀宝东  杨雪  隋文志 《环境科学》2020,41(9):4273-4283
本研究旨在明确生境质量变化对土壤细菌群落的影响,为松花江退化湿地选择科学的修复方法提供参考依据.于2018年使用Illumina MiSeq PE300第二代高通量测序平台对松花江下游的5种土地利用类型湿地(天然湿地、稻田地、玉米田、采砂迹地及恢复湿地)土壤细菌16S rDNA进行测序,分析不同土地利用类型土壤细菌群落多样性和功能的差异.结果表明:沿江湿地开垦为玉米田造成土壤细菌的Ace、Chao1和Shannon指数显著降低(P<0.05),采砂迹地的仿湿地修复使土壤细菌的Ace、Chao1和Shannon指数显著提高(P<0.05).天然湿地、稻田、玉米田和采砂迹地的土壤细菌群落结构差异显著(P<0.05),采砂迹地与恢复湿地的土壤细菌群落结构相似.沿江湿地土壤细菌划分为40门、105纲、258目、421科、802属和1673种,变形菌门、放线菌门、酸杆菌门、绿弯菌门、拟杆菌门、疣微菌门、厚壁菌门和芽单胞菌门为各样地共有的优势菌门(相对丰度>1%).相比之下,拟杆菌门偏好稻田土壤环境,变形菌门和芽单胞菌门偏好玉米田土壤环境,放线菌门偏好采砂迹地土壤环境.湿地土壤细菌具有新陈代谢、环境信息处理、遗传信息处理、细胞过程、人类疾病和有机系统这6类一级代谢通路、46类二级代谢通路和19类主要二级代谢通路(相对丰度>1%).土壤pH、含水量、碱解氮和碳氮比是沿江湿地土壤细菌群落多样性的主要影响因子.由此可见,改变沿江湿地土地用途降低了土壤生态系统稳定性,增加了湿地退化的潜在生态风险.  相似文献   

3.
株洲清水塘工业区周边土壤微生物群落特征   总被引:2,自引:0,他引:2  
基于Illumina高通量测序技术分析了株洲清水塘工业区周边土壤的微生物群落特征,研究重金属污染对土壤微生物群落的影响.结果表明,土壤微生物群落的相对丰度和多样性变化趋势一致,均随着重金属污染程度增加而减小;稻田土壤平均相对丰度最高的门是变形菌门(49. 56%),其次为绿弯菌门(13. 07%)和酸杆菌门(8. 77%);较高重金属污染程度下伴随着更高丰度的变形菌门、绿弯菌门与更低丰度的硝化螺旋菌门、酸杆菌门; 4组样品的微生物群落结构相似性较高,OTU重叠度达52. 64%,丰度较高的OTU其微生物群落更趋向于相似;结合Spearman相关性分析,Cr与变形菌门显著负相关,与绿弯菌门显著正相关,Cd、Cu、Pb和Zn与硝化螺旋菌门显著负相关.以上结果表明,重金属污染是影响清水塘工业区周边土壤微生物群落结构的重要因素.  相似文献   

4.
黄土丘陵区退耕还林还草对土壤细菌群落结构的影响   总被引:3,自引:0,他引:3  
为了探究黄土丘陵区退耕还林还草工程对土壤细菌群落的影响,本文以宁南山区玉米农地为对照,人工柠条地和天然草地为退耕还林还草的处理,利用Illumina二代高通量测序技术MiSeq对土壤细菌的16S rRNA V3~V4可变区进行测序,研究3种植被下土壤细菌的α多样性、物种组成和丰富度,并结合土壤理化性质探讨影响细菌群落结构的环境因素.3种土壤样品中共检测到细菌29门,76纲,135目,250科,375属,682种,主要的优势菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、芽单胞菌门(Gemmatimonadetes)、厚壁菌门(Firmicutes),主要的优势菌纲为α-变形菌纲(α-Proteobacteria)、放线菌纲(Actinobacteria)、酸杆菌纲(Acidobacteria)、β-变形菌纲(β-Proteobacteria)、嗜热油菌纲(Thermoleophilia)、芽单胞菌纲(Gemmatimonadetes)、杆菌纲(Bacilli)、δ-变形菌纲(δ-Proteobacteria).与耕地相比,林地的优势菌主要是变形菌门(Proteobacteria)和放线菌门(Actinobacteria),草地的是放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria).柠条林地的土壤微生物多样性最高.通过RDA分析发现,影响本研究区域土壤细菌分布的最主要环境因子是全氮和有机质.研究表明通过退耕还林与还草工程明显地改善了土壤肥力和环境状况,改变了土壤细菌群落组成.  相似文献   

5.
为探索稀土开采对土壤生态系统的影响,以长汀离子型稀土矿开采废弃地为研究对象,通过采集稀土开采前、开采后的取土场和堆浸池的土壤,通过提取土壤DNA后,利用Illumina Miseq高通量测序平台进行细菌的16S r DNA测序,分析以上3个作业区土壤细菌OTU组成,并以此为基础进行物种注释、多样性和系统发育树分析.研究结果表明:稀土开采后的取土场和堆浸池比开采前土壤细菌群落多样性以及各类群组成丰度比例发生显著变化,但土壤细菌的优势种群不变,分别从门、纲、目、科、属水平鉴定的优势种为:厚壁菌(门)、芽孢杆菌(纲)、乳杆菌(目)、肠球菌(科)、肠球菌(属),系统发育树显示厚壁菌门、变形菌门、放线菌门、拟杆菌门、疣微菌门、酸杆菌门、硝化螺旋菌门、蓝藻门、Thermi在系统发育上有一定的亲缘关系.  相似文献   

6.
为探究不同人为扰动对自然河流生态环境的影响,以嘉陵江河道沉积物细菌群落为研究对象,利用高通量测序技术分析工程干扰、支流干扰、采砂干扰、垦殖干扰和无干扰断面河道沉积物细菌的群落组成和功能变化.结果表明,嘉陵江不同干扰断面河道沉积物理化性质和细菌群落多样性均具有显著差异(P<0.05).无干扰断面细菌群落多样性最高,同时,采砂干扰和无干扰断面细菌群落均匀度最高,而支流干扰和垦殖干扰均导致细菌群落多样性和均匀度降低.工程干扰对细菌群落组成的影响显著区别于其他4种干扰断面.细菌优势菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)、酸杆菌门(Acidobacteriota)和绿弯菌门(Chloroflexi),优势菌纲为γ-变形菌纲(γ-Proteobacteria)、α-变形菌纲(α-Proteobacteria)和Vicinamibacteria纲.采砂干扰导致放线菌门增加,工程干扰促进了酸杆菌门的增加.含水率、有机碳、总氮和总磷是影响沉积物微生物群落变化的主要环境因子.细菌群落主要涉及新陈代谢、遗传信息处理、环境信息处理和细胞过程这4类一级...  相似文献   

7.
通过构建16S/18S rDNA基因文库,分析自由表面流人工湿地污水处理系统春季空气细菌和空气真菌群落结构特征.结果表明,空气细菌分布在变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)、蓝藻门(Cyanophyta)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes),主要为β-变形菌纲(71.04%)、γ-变形菌纲(12.03%)、α-变形菌纲(3.83%)、蓝藻纲(4.38%)、芽孢杆菌纲(3.28%)和鞘脂杆菌纲(2.19%),优势菌属是马赛菌属(Massilia 66.66%)、假单胞菌属(Pseudomonas 4.37%)、蓝丝细菌属(Cyanothece 3.83%)和沙雷氏菌属(Serratia 3.28%).空气真菌主要类群为座囊菌纲(Dothideomycetes 61.18%),其次是接合菌纲(Zygomycetes 16.47%)、盘菌纲(Discomycetes 14.12%),优势菌属是核腔菌属(Pyrenophora 48.31%)、被孢霉属(Mortierella 15.7%)、缘刺盘菌属(Cheilymenia 12.4%)、Boothiomyces (4.5%).人工湿地空气微生物中未检测出大肠杆菌(Escherichia coli)、沙门氏菌(Salmonella spp.)和产气荚膜梭菌(Clostridium perfringens),但存在粘质沙雷氏菌(S. marcescens)、恶臭假单胞菌(P. putida)、表皮葡萄球菌(Staphylococcus epidermidis)等致病菌或条件致病菌.  相似文献   

8.
秦岭红桦林土壤细菌群落剖面分布特征及其影响因素   总被引:2,自引:0,他引:2  
研究秦岭辛家山林区红桦林细菌群落在土壤剖面上的分布状况,对评估土壤细菌在森林生态系统土壤肥力调节、碳氮循环等作用至关重要.采用Illumina MiSeq高通量测序技术对土壤细菌16S r DNA V3~V4可变区进行测序,结合相关生物信息学分析,初步探讨了红桦林0~10、10~20、20~40和40~60 cm这4个土壤层细菌群落丰富度、多样性指数和细菌群落组成及丰度变化.结果表明,在红桦林土壤剖面上,OTUs、Chao1指数、Shannon指数均在0~10 cm处达到最大值,分别为1 688、2 314、8.66,土层间差异不显著.4个土壤层的优势菌门均为酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria),主要的优势菌属为Gp4、Gp6和Gp16.优势菌门的相对丰度在土层间并不相同,0~10 cm土壤层具有较高的变形菌门(Proteobacteria),其相对丰度为23.62%,而40~60 cm具有较高的酸杆菌门(Acidobacteria),相对丰度为62.88%.酸杆菌门(Acidobacteria)与全氮、土壤有机碳、C/N、可溶性有机碳显著相关,变形菌门(Proteobacteria)与土壤含水量、土壤有机碳、可溶性有机碳显著相关.经RDA分析证明,影响秦岭红桦林土壤剖面细菌群落分布的主要土壤因素是可溶性有机碳.这些研究结果表明在秦岭红桦林土壤4个土层均有较高的细菌多样性,为进一步认识森林土壤细菌多样性奠定了理论基础,在研究森林生态系统土壤剖面养分循环过程时应予以考虑.  相似文献   

9.
为研究岩溶地区湿地生态系统的细菌群落在植被恢复过程中的结构和多样性以及环境因子对其产生的影响,以桂林会仙岩溶湿地沉积物中提取的总DNA为模板,采用Illumina HiSeq 2500高通量测序技术,对细菌16S rDNA V4、V5区进行测序并分析,共得到有效序列711 403条,序列平均长度为372.34 bp,聚类产生5 952个OTU(Operational Taxonomic Unit).结果表明,研究区沉积物具有较高的细菌多样性,包含70个门,150个纲,195个目,325个科,446个属.其中,变形菌门(Proteobacteria)是优势类群,占比为18.33%~44.16%,并以β-变形菌纲(Betaproteobacteria)、γ-变形菌纲(Gammaproteobacteria)及δ-变形菌纲(Deltaproteobacteria)为主要组成部分,这些类群中包含了硫杆菌属(Thiobacillus)和脱硫酸盐橡菌属(Desulfatiglans)等参与硫元素循环的菌群,推测对湿地沉积物中的硫循环有着重要作用;同时,属水平上存在大量(37.85%~84.67%)未分类(Unclassified)细菌类群.在会仙岩溶湿地水质及沉积物化学指标中,与细菌群落相关性较大的是ρ(NO3--N)、ρ(NO2--N)、ρ(TP)和ρ(TN)等水质指标.研究显示,桂林会仙岩溶湿地细菌具有很高的多样性,沉积物中蕴藏了许多潜在新物种;并且,水质指标对沉积物细菌群落结构及多样性的影响较大,说明人为因素对于会仙岩溶湿地微生物群落结构的影响较为显著.   相似文献   

10.
生物炭添加对半干旱区土壤细菌群落的影响   总被引:2,自引:0,他引:2  
以半干旱区固原生态试验站生物炭修复4a的表层土壤为对象,采用高通量测序技术研究了不同添加类型(槐树皮生物炭、锯末生物炭)和比例(1%、3%、5%,质量百分比)的生物炭对土壤细菌多样性及群落结构的影响.结果表明,生物炭应用提高了土壤细菌群落的多样性,锯末生物炭优于槐树皮生物炭,且3%锯末生物炭对细菌群落的多样性影响最佳,其香农指数为6.22;优势门主要为放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)和Saccharibacteria,相对丰度共占76.80%~85.31%;优势纲有放线菌纲(Actinobacteria)、α-变形菌纲(Alphaproteobacteria)、酸杆菌纲(Acidobacteria),其相对丰度占48.13%~57.08%;属水平上,施加生物炭增加了芽孢杆菌属(Bacillus)、硝化螺旋菌属(Nitrospira)的相对丰度,降低了土微菌属(Pedomicrobium)、根瘤菌属(Rhizobium)的相对丰度;层级聚类及冗余分析(RDA)发现,施加生物炭对细菌群落结构有影响,其中,微生物量碳、含水率、铵态氮、有机碳对细菌群落结构的影响较大.细菌优势门与环境因子相关性热图分析表明,铵态氮与放线菌门、绿弯菌门呈显著相关性.铵态氮是影响细菌群落的主要理化因子.  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

16.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

17.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

18.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

19.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

20.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号