首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以酵母为实验材料,研究了镉(以CdCl2形式添加)对细胞的毒性作用机制.结果显示,浓度为0.25~5 mmol·L-1的镉可降低酵母细胞活性,诱导细胞死亡;随着镉浓度的提高和处理时间的延长,细胞死亡率增高.凋亡抑制剂Z-Asp-CH2-DCB与镉共同作用后,细胞死亡率明显低于镉单独处理组.经镉处理后,酵母细胞内的活性氧(ROS)水平显著升高;外源抗氧化剂抗坏血酸和过氧化氢酶能降低镉引发的细胞死亡,特异性Ca2+螯合剂EGTA或Ca2+通道特异性抑制剂LaCl3亦可明显降低镉诱发的细胞死亡率.研究表明,镉诱发的酵母细胞死亡过程存在依赖于caspase途径的细胞凋亡途径;镉诱发的死亡与镉处理组胞内ROS和Ca2+水平升高有关,ROS可能通过增加胞内Ca2+水平,继而激活相关下游信号导致细胞死亡.  相似文献   

2.
NO参与亚砷酸钠诱导酵母细胞死亡的调控   总被引:1,自引:0,他引:1  
以模式生物酵母细胞为材料,研究亚砷酸钠胁迫对细胞死亡率和胞内NO水平的影响,以探讨NO在砷诱导细胞死亡中的作用.结果显示,浓度为1~7mmol·L-1的亚砷酸钠可降低酵母细胞活性,诱导细胞死亡,随着处理浓度的升高和作用时间的延长,细胞死亡率增高;死细胞出现核固缩和核降解等凋亡特征;凋亡抑制剂Z-Asp-CH2-DCB(2"mol·L-1)与3mmol·L-1亚砷酸钠共同作用后,酵母细胞死亡率下降.在亚砷酸钠胁迫的过程中,酵母细胞内NO水平升高;一定浓度的NO清除剂c-PTIO(0.2mmol·L-1)或NO生成抑制剂NaN3(1mmol·L-1)均可降低亚砷酸钠引起的酵母细胞死亡率.结果表明,砷胁迫诱导的胞内NO升高是酵母细胞死亡的一个诱因,亚砷酸钠诱发的酵母细胞死亡中可能存在细胞凋亡过程.  相似文献   

3.
为研究太原市冬季灰霾天气下大气PM2.5对肺泡巨噬细胞(AM)的毒性作用,采用采集于2011年12月30—31日的灰霾PM2.5悬浮液体外处理大鼠AM(终浓度分别为0、33、100、300μg·m L-1),用MTT法检测细胞活力,用酶标仪测定胞内超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)及Ca2+浓度,并用流式细胞仪测定胞内活性氧(ROS)和细胞凋亡状况.结果表明:随着PM2.5浓度增大,AM存活率、SOD和GSH-Px活性下降,MDA及ROS含量和Ca2+浓度升高,均呈现剂量-效应关系,细胞早期凋亡率也随着染毒浓度的增加呈现升高趋势,揭示了太原市灰霾PM2.5可使AM产生氧化应激,引起细胞脂质过氧化损伤和凋亡发生.  相似文献   

4.
NO参与铝诱导蚕豆保卫细胞死亡的调控   总被引:3,自引:3,他引:0  
王毅  仪慧兰 《环境科学学报》2013,33(6):1803-1808
铝(Al)是地壳中含量最丰富的金属元素,是酸性土壤中导致植物生长抑制和作物产量下降的一个主要因素,但铝毒性作用机制尚不清楚.本文以蚕豆叶表皮为材料,研究铝胁迫对气孔保卫细胞活性的影响,探讨NO在铝诱导细胞死亡中的作用.结果表明,一定浓度的A1Cl3可诱导气孔保卫细胞活性降低,部分细胞死亡,且随着铝浓度的增高细胞死亡率增高.死细胞呈现核固缩、核崩解、凋亡小体等典型凋亡特征,且凋亡抑制剂Z-Asp-CH2-DCB能阻止AlCl3诱发的细胞死亡.用NO清除剂c-PTIO、NO合酶抑制剂L-NAME或硝酸还原酶抑制剂NaN3降低铝处理组胞内NO后,细胞死亡率显著降低,胞内ROS、Ca2+水平同期降低;NaN3还能降低铝处理组中具有程序性死亡特征的细胞比率.用ROS清除剂AsA清除铝处理组胞内ROS后,细胞死亡率显著降低,胞内Ca2+和NO水平亦显著降低;铝处理液中加入Ca2+通道抑制剂LaCl3后,细胞死亡率低于铝单独处理组,胞内ROS和NO水平无明显改变.研究结果表明,铝胁迫引起的胞内NO合成增加通过Ca2+信号途径介导了保卫细胞的程序性死亡.  相似文献   

5.
将1.0g/L的微囊藻毒素-LR(MC-LR)降解菌恶臭假单胞菌(Pseudomonas putida)置于含不同浓度MC-LR的体系中,研究了体系中菌体细胞完整性和生物量的变化,考察了MC-LR对细胞的氧化胁迫以及抗氧化酶的响应.结果表明,MC-LR能够增大P. putida细胞质膜通透性,造成膜损伤,导致胞内物质外流,使细胞完整性遭到破坏;同时,MC-LR能够引起P. putida细胞的氧化胁迫,随着毒素暴露时间的延长,活性氧自由基(ROS)和膜脂过氧化产物丙二醛(MDA)含量显著升高,具有明显的剂量效应.超氧化物歧化酶(SOD)活性在MC-LR的诱导下有一个先升后降的过程,表现为对低浓度污染物的主动响应,而高浓度(2.5 mg/L)MC-LR作用5d后,ROS积累到相当高水平,对细胞代谢功能造成破坏,使SOD活性下降,并加速细胞的死亡,P. putida生物量与对照相比,下降了将近50%.  相似文献   

6.
纳米氧化锌具有广泛的工业用途,其生态安全性受到广泛关注,针对纳米氧化锌诱导的呼吸道细胞毒性及其作用机理研究尚不广泛.本研究分别采用不同浓度和粒径(30 nm和90 nm)的氧化锌颗粒物处理大鼠气管上皮细胞(rat tracheal epithelial cells,RTE cells),暴露时间为12 h,通过检测细胞内锌元素含量,细胞增殖抑制率,细胞凋亡率,凋亡相关caspsae 3基因与蛋白相对表达量,细胞内金属硫蛋白活性,ROS和MDA含量、细胞内Ca~(2+)-ATP酶和Na~+/K~+-ATP酶活性来分析纳米氧化锌诱导细胞毒效应机理.在90 nm纳米氧化锌高浓度暴露时,其细胞内锌元素浓度为0.845μg·L~(-1),约为低浓度暴露组的4.7倍,是30 nm低浓度暴露组的9倍;纳米颗粒物诱导的细胞增殖和凋亡毒效应具有剂量和尺寸依赖效应;30 nm处理组的pro-caspase 3和cleaved-caspase 3蛋白表达量均高于90 nm暴露组;暴露浓度为10 mg·L~(-1)的90 nm处理组的金属硫蛋白增加量为0.533μg·L~(-1),增幅达到46%;不同粒径氧化锌颗粒物处理后,细胞内ROS和MDA含量显著上升,且30 nm处理组结果均高于90 nm处理组;纳米氧化锌颗粒物暴露诱导细胞Ca~(2+)-ATP酶和Na~+/K~+-ATP酶活性显著下降,30 nm氧化锌颗粒物暴露组,其Na~+/K~+-ATP酶活性分别是对照组的1.8倍和3.5倍.纳米氧化锌颗粒物进入RTE细胞,通过干扰锌在细胞内代谢,诱导细胞内ROS和MDA水平升高,产生氧化应激,进而诱导细胞凋亡是导致纳米氧化锌产生细胞毒性的主要原因之一.纳米氧化锌会导致细胞内Ca~(2+)-ATPase和Na~+/K~+-ATPase活性下降,离子通道失调,破坏细胞内离子平衡,进一步造成细胞凋亡.  相似文献   

7.
六氯苯对离体鱼肝线粒体抗氧化酶的作用   总被引:4,自引:0,他引:4       下载免费PDF全文
采用差速离心法从鲫鱼肝脏中提取线粒体,用不同浓度(0,2,4,8,16,32mg/L)六氯苯对其体外染毒30min.测定线粒体超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性,用聚丙烯酰胺凝胶电泳法分析其同工酶谱,并检测线粒体中丙二醛(MDA)含量.结果显示,SOD和GSH-Px活性及其同工酶的活性表达均呈现出低浓度六氯苯作用下被激活,高浓度六氯苯作用下被抑制的变化趋势.在高浓度六氯苯(32mg/L)作用下线粒体中MDA含量显著增加.说明六氯苯的毒性作用可能为一种自由基机制,即低浓度的六氯苯导致线粒体内活性氧自由基(ROS)生成量少量增加,SOD和GSH-Px及其同工酶活性由于氧化应激的诱导被激活;随着六氯苯浓度增加,线粒体内ROS生成量大量增加,并破坏了SOD和GSH-Px的抗氧化活性,导致其活力下降或丧失,自由基含量增加,线粒体脂质过氧化加剧.  相似文献   

8.
刘慧  王晓蓉  王为木  沈骅 《环境科学》2005,26(1):173-176
选择幼龄鲫鱼为材料 ,研究锌(Zn2+)及其配合物(Zn-EDTA)低浓度长期暴露(40d)对鲫鱼(Carassius auratus)肝脏锌富集和抗氧化防御系统的影响 .结果表明 ,鲫鱼肝脏中锌的积累量随锌暴露浓度的升高而增加,且Zn2+处理明显高于Zn EDTA处理 .2种形态锌对鲫鱼肝脏超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)和谷胱甘肽过氧化物酶 (GPx)均表现出抑制作用 ,其中Zn2+暴露浓度与酶活性之间存在良好的剂量效应关系;Zn2+在低浓度时对谷胱甘肽转硫酶(GST)有诱导作用 ,高浓度时为抑制作用 .Zn EDTA对GST活性始终产生抑制作用 .CAT与GPx对锌暴露比GST和SOD更为敏感 ,适合作为水环境锌污染的早期监测指标 .  相似文献   

9.
纳米氧化锌对斑马鱼肝脏的毒性效应   总被引:3,自引:1,他引:2  
采用半静态急性实验方法,研究斑马鱼在浓度为0、0.05、0.1、5、10、25、50 mg·L-1的纳米氧化锌(nano-Zn O)中暴露4、24、96 h后,nano-Zn O对肝中超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)的影响,肝脏中Bcl-2、Bax、p53和MDM2的mRNA表达量的变化以及暴露7、15、30 d时肝组织解剖结构变化情况.结果表明,与对照组相比,实验组表现为:1肝组织出现组织水肿,部分细胞质空泡化、细胞核固缩;2肝巨噬细胞增多,窦间隙增大;3肝中SOD活性升高、MDA含量增加、CAT活性降低;4肝脏中Bax/Bcl-2和p53的mRNA的表达量均升高;5 MDM2 mRNA的表达量表现为在低浓度组中降低,高浓度组中则升高.实验结果表明,nano-Zn O能引起斑马鱼肝脏发生氧化应激作用,使肝中抗氧化酶活性发生变化,并诱导肝脏中细胞凋亡相关基因的表达,使细胞发生凋亡且造成肝组织结构发生变化.  相似文献   

10.
SO2诱导的萱草保卫细胞凋亡及其信号调节   总被引:2,自引:2,他引:0  
SO2是一种常见的大气污染物,急性和慢性暴露都会对植物造成伤害.因此,本文以景观绿化植物萱草叶片下表皮为材料,研究了SO2对气孔保卫细胞的致死效应及其可能的信号调节途径.结果表明,利用SO2体内衍生物-亚硫酸钠和亚硫酸氢钠混合液处理萱草表皮3 h后,随着处理浓度(1.0~5.0 mmol·L-1)的增加,萱草保卫细胞生理活性下降,甚至死亡;浓度超过2.0 mmol·L-1时,细胞死亡率显著增高(p0.05),死细胞出现核固缩、核拉长、核碎片等典型凋亡特征,保卫细胞内的活性氧种(ROS)、一氧化氮(NO)和Ca2+水平显著升高.采用不同浓度的抗氧化剂过氧化氢酶(CAT)、抗坏血酸(AsA),Ca2+螯合剂乙二醇双四乙酸(EGTA)和Ca2+通道抑制剂氯化镧(LaCl3)及NO清除剂羧基-2苯-4,4,5,5-四甲基咪唑-1-氧-3氧化物(C-PTIO)和合成抑制剂叠氮钠(NaN3)处理后,均可使SO2衍生物诱发的细胞死亡率降低,以200 U·mL-1CAT、0.05 mmol·L-1的AsA、EGTA、LaCl3及0.20 mmol·L-1的C-PTIO、NaN3的效果最佳,同时胞内ROS、NO和Ca2+水平下降.以上结果表明,一定浓度的SO2可诱导萱草保卫细胞死亡,可能通过诱导ROS和NO爆发,激活细胞质膜钙通道,进而引起胞内Ca2+增加,通过ROS-NO-Ca2+信号途径介导细胞死亡.SO2诱导的萱草细胞死亡可能存在细胞凋亡过程.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

16.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

17.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

18.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

19.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号