首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为探究厌氧氨氧化颗粒污泥胞外金属元素特性,将厌氧氨氧化颗粒污泥根据粒径筛分为0.5~1.4mm、1.4~2.8mm、>2.8mm 3组,提取不同粒径厌氧氨氧化颗粒污泥胞外聚合物(EPS),研究EPS金属元素特性.结果表明,蛋白质(PN)是厌氧氨氧化颗粒污泥EPS的主要成分,占EPS含量的84.2%以上.随着粒径的增大,EPS中Na、K、Ca、Mg元素含量均增多,且与EPS中蛋白质含量变化一致.EPS中K、Ca、Mg元素的离子形式占比分别为68.6%、56.2%、94.7%.EPS经过阳离子交换树脂(CER)处理后,0.5~1.4mm、1.4~2.8mm、>2.8mm组EPS Zeta电位分别减小了4.7,7.2,9.1mV,EPS中的金属离子可通过压缩双电层作用促进颗粒污泥的聚集,金属离子对大粒径颗粒污泥EPS Zeta电位的影响幅度更大.  相似文献   

2.
为探究厌氧氨氧化颗粒污泥胞外金属元素特性,将厌氧氨氧化颗粒污泥根据粒径筛分为0.5~1.4mm、1.4~2.8mm、>2.8mm 3组,提取不同粒径厌氧氨氧化颗粒污泥胞外聚合物(EPS),研究EPS金属元素特性.结果表明,蛋白质(PN)是厌氧氨氧化颗粒污泥EPS的主要成分,占EPS含量的84.2%以上.随着粒径的增大,EPS中Na、K、Ca、Mg元素含量均增多,且与EPS中蛋白质含量变化一致.EPS中K、Ca、Mg元素的离子形式占比分别为68.6%、56.2%、94.7%.EPS经过阳离子交换树脂(CER)处理后,0.5~1.4mm、1.4~2.8mm、>2.8mm组EPS Zeta电位分别减小了4.7,7.2,9.1mV,EPS中的金属离子可通过压缩双电层作用促进颗粒污泥的聚集,金属离子对大粒径颗粒污泥EPS Zeta电位的影响幅度更大.  相似文献   

3.
目前运行容易失稳已成为制约厌氧氨氧化(ANAMMOX)工艺应用的因素之一.在保证底物不抑制的条件下,通过对实验室前期运行失稳的连续流全混反应器(CSTR)中的厌氧氨氧化污泥进行活性恢复,研究了滞留的基质浓度对ANAMMOX污泥恢复过程中颗粒化及活性的影响.结果表明,经过126d运行,ANAMMOX污泥活性获得恢复且脱氮能力明显提升.控制高、低基质浓度水平的2个反应器均能实现污泥的颗粒化及氮素的高效去除,NRR最大分别达到16. 97 kg·(m~3·d)~(-1)和14. 43 kg·(m~3·d)~(-1).随着反应器脱氮能力的提高(污泥颗粒粒径增大),R1、R2两个反应器内污泥的胞外聚合物EPS含量(以VSS计)均增大,分别由接种时的34. 45 mg·g~(-1)增大至77. 52 mg·g~(-1)和94. 18 mg·g~(-1),PN/PS由1. 89分别增大到6. 25和6. 84.在一定范围内,PN/PS比值增大有利于ANAMMOX污泥颗粒化,但PN/PS过大会导致颗粒污泥结构失稳上浮,加剧污泥流失现象.  相似文献   

4.
为研究ANAMMOX(厌氧氨氧化)工艺处理晚期垃圾渗滤液过程中氮转化途径的变化及颗粒污泥特性,采用2套ANAMMOX-UASB生物膜反应器(1#系统和2#系统)分别处理晚期垃圾渗滤液和无机配水,考察两种水质条件下ANAMMOX系统的脱氮性能,并对稳定运行时期两个系统颗粒污泥中ANAMMOX菌活性、硝化活性、反硝化活性及其污泥理化特性进行对比. 结果表明:1#系统经过连续培养逐渐适应了晚期垃圾渗滤液,实现了ANAMMOX耦合异养反硝化高效脱氮;稳定期1#系统和2#系统中TN的平均去除率分别为86.66%和76.77%. 1#系统和2#系统的颗粒污泥均具有ANAMMOX活性、硝化活性和反硝化活性,1#系统中颗粒污泥ANAMMOX活性和硝化活性较2#系统略有降低,而反硝化活性则大有提高;两个系统中ANAMMOX过程对TN去除速率分别为0.286和0.301 g/(g·d). 1#系统中颗粒污泥呈红褐色,2#系统中颗粒污泥呈砖红色,两个系统中粒径>1.5~2.5 mm的颗粒污泥所占比例分别为66.10%和50.67%,基本处于传质作用最佳的区间.   相似文献   

5.
为实现厌氧氨氧化颗粒污泥(ANAMMOX granular sludge,AGS)的快速培养,采用上流式厌氧污泥床(up-flow anaerobic sludge bed,UASB)工艺,在添加少量絮状厌氧氨氧化污泥(flocculent ANAMMOX sludge,FAS)的反应器内填充生物流离球作为填料,对ANAMMOX的启动及FAS的颗粒化进行研究.同时利用Haldane模型研究AGS的基质抑制动力学特性.结果表明,利用生物流离球作为填料,实现了ANAMMOX的启动,总氮去除率达85%以上,总氮容积负荷为0. 72 kg·(m3·d)-1,并在127 d内成功培养出直径1. 0~3. 0 mm的AGS.动力学研究表明,反应器内AGS对氨和亚硝酸盐的最大反应速率分别为1. 46 kg·(kg·d)-1和1. 76 kg·(kg·d)-1,半抑制速率分别是852. 2 mmol·L-1和108. 2 mmol·L-1.与絮状污泥相比,AGS能承受更高的氨和亚硝酸盐抑制浓度,并保持较高的反应速率.采用含有海绵的生物流离球作为填料,能有效加速反应器的启动,加快AGS的形成,对厌氧氨氧化工艺的实际运行具有积极的意义.  相似文献   

6.
厌氧氨氧化污泥的保存对其后续在反应器的脱氮过程有着重要的影响,因此,本研究针对不同形态的厌氧氨氧化污泥—生物膜和颗粒污泥的低温保存性能开展研究.结果表明,在64d 4℃的保存后,生物膜和颗粒污泥的厌氧氨氧化比活性分别降至(351.4±14.5),(32.3±2.7)mgN/(gVSS·d),分别为初始活性的62.1%和6.0%.EPS含量分别减少至(18.4±0.3)mg/gVSS和(13.3±1.5)mg/gVSS.生物膜和颗粒污泥中厌氧氨氧化功能菌属Candidatus Kuenenia丰度分别减少为6.1%和1.6%,厌氧氨氧化菌16S rRNA丰度分别降低为(1.48±0.29)×108 gene copies/gVSS和(5.05±1.53)×107 gene copies/gVSS.在后续的活性恢复过程中生物膜相较于颗粒污泥达到NRR为0.54kgN/m3/d花费周期缩短了15d.因此,厌氧氨氧化生物膜是比颗粒污泥更好的保存形态.  相似文献   

7.
为研究厌氧氨氧化-羟基磷灰石(Anammox-HAP)颗粒污泥系统的启动方法,采用厌氧氨氧化膨胀床反应器(AAFEB),接种少量厌氧氨氧化污泥,通过调控基质浓度和水力停留时间,考察系统内污泥粒径及胞外聚合物(EPS)的变化,同时监测系统的脱氮除磷性能.结果表明,在低上升流速0.213~1.066m/h、Ca/P=5.5物质的量比的条件下,不断提高进水氮负荷,实现了Anammox颗粒污泥系统的启动.总氮、正磷酸盐去除率分别为(78.0±9.8)%、(63.8±9.9)%,总氮容积负荷达2.74kg/(m3·d),在150d内培养出平均粒径为0.4mm的微颗粒污泥.颗粒的形态特征和元素分布检测表明其为Anammox-HAP颗粒污泥.随着颗粒污泥粒径的增加,EPS中的PS含量基本不变,PN从54.43mg/g增加到137.40mg/g,PN/PS从6.63提高到7.71.EPS中PN占比与粒径之间存在正相关,对污泥颗粒的形成起主要作用.  相似文献   

8.
为研究厌氧氨氧化-羟基磷灰石(Anammox-HAP)颗粒污泥系统的启动方法,采用厌氧氨氧化膨胀床反应器(AAFEB),接种少量厌氧氨氧化污泥,通过调控基质浓度和水力停留时间,考察系统内污泥粒径及胞外聚合物(EPS)的变化,同时监测系统的脱氮除磷性能.结果表明,在低上升流速0.213~1.066m/h、Ca/P=5.5物质的量比的条件下,不断提高进水氮负荷,实现了Anammox颗粒污泥系统的启动.总氮、正磷酸盐去除率分别为(78.0±9.8)%、(63.8±9.9)%,总氮容积负荷达2.74kg/(m3·d),在150d内培养出平均粒径为0.4mm的微颗粒污泥.颗粒的形态特征和元素分布检测表明其为Anammox-HAP颗粒污泥.随着颗粒污泥粒径的增加,EPS中的PS含量基本不变,PN从54.43mg/g增加到137.40mg/g,PN/PS从6.63提高到7.71.EPS中PN占比与粒径之间存在正相关,对污泥颗粒的形成起主要作用.  相似文献   

9.
傅金祥  钱杰  张黎  于鹏飞  罗迪  由昆 《环境工程》2020,38(11):98-102+109
为了研究高浓度磷对厌氧氨氧化效能和污泥特性的影响,采用UASB反应器进行连续试验,考察不同磷浓度时的Anammox脱氮效能,并通过扫描电镜和能谱分析技术对颗粒污泥表面形态和元素组成分析。结果表明:磷浓度达到600 mg/L时开始抑制厌氧氨氧化脱氮效能,700 mg/L对Anammox脱氮效能造成91.86%的抑制,降低磷浓度培养10 d后完全恢复;随着进水磷浓度的增加,反应器对磷的截留率减小;高浓度磷导致反应器底部颗粒污泥表面形成白色固体,为由C、O、P和Ca构成羟基磷灰石和磷酸钙等难溶化合物,能谱分析结果显示,该固体中O、P、C和Ca原子数量分别占41.89%、21.78%、14.41%和10.82%。  相似文献   

10.
羟胺对厌氧氨氧化污泥群落的影响   总被引:1,自引:2,他引:1  
目前,由于厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)过程具有高效率、低能耗和污泥量少的优点,在污水除氮方面具有广阔的应用前景.羟胺既是厌氧氨氧化代谢的中间产物,同时也是一种抑制剂,但是目前关于厌氧氨氧化细菌颗粒如何应对羟胺的压力还没有很好的解释.通过羟胺批次添加实验,发现在投加不同浓度的羟胺情况下(40~80mg·L~(-1)),厌氧氨氧化的反应活性受到了抑制作用,但是无法判断厌氧氨氧化细菌对羟胺的耐受阈值.然后基于实时荧光定量聚合酶链反应(RT-qPCR)技术检测了不同反应器内肼氧化酶(HZO)的mRNA的表达量,发现HZO酶的表达量随着羟胺浓度的增加出现先升高后降低的趋势,由此本研究推测相对于3.12g·L~(-1)的厌氧氨氧化颗粒污泥,其承受的羟胺浓度(以N计)阈值介于60~70mg·L~(-1).同时利用16S rRNA高通量测序的方法对反应器内的颗粒污泥微生物结构与功能进行分析,发现投加适量的羟胺(50mg·L~(-1))有助于增强颗粒污泥中细菌的细胞运动性,促进厌氧氨氧化细菌的组成,提供一个更佳的生态平衡.  相似文献   

11.
胞外多聚物在好氧颗粒污泥形成中的作用机制   总被引:18,自引:13,他引:18  
在SBR反应器活性污泥好氧颗粒化过程中,分析不同时期污泥EPS主要成分的变化、污泥表面特性的变化及二者相关关系.不同时期污泥样品胞外蛋白的SDS-PAGE表明,蛋白分子量条带主要分布在(31.0~97.4)×103,与种泥相比,颗粒污泥在形成过程中增加了一些新蛋白条带,且条带颜色逐渐变深,定性表明蛋白种类及含量的增加.定量测定也表明,胞外蛋白分泌量随颗粒污泥的形成逐渐从49.4 mg·g-1增至148.3 mg·g-1,多糖则无明显变化,蛋白/多糖值也从2.3逐渐增至4.9.颗粒污泥表面疏水性比种泥约增加1倍,疏水性的变化与蛋白/多糖值正相关,相关系数为0.969.测得种泥与颗粒污泥表面Zeta电位平均值分别为-28.5 mV和-13.2 mV,颗粒污泥表面的电负性明显降低.由蛋白质自身特性,可推测其通过增加污泥表面相对疏水性和降低污泥表面电负性而促进好氧颗粒污泥形成的作用机制.  相似文献   

12.
考察了聚醚砜(PES)微塑料及2,4-二氯苯酚(2,4-DCP)对厌氧颗粒污泥疏松胞外聚合物(LB-EPS)和紧密胞外聚合物(TB-EPS)组分的影响,并利用高通量测序技术对厌氧颗粒污泥的微生物群落及基因功能变化进行了分析.结果 表明,2,4-DCP以及PES +2,4-DCP实验组COD去除率分别为35%和37%,与...  相似文献   

13.
pH值对活性污泥胞外聚合物分子结构和表面特征影响研究   总被引:14,自引:6,他引:14  
郑蕾  田禹  孙德智 《环境科学》2007,28(7):1507-1511
为明确胞外聚合物(extracellular polymeric substances,EPS)对污水污泥性质的影响机制,通过改变pH值,考察了市政废水和饮料废水2种活性污泥胞外聚合物组分变化,采用红外光谱对比分析了pH值对EPS分子结构的影响,并通过胶体滴定测定其表面电荷,最终结合活性污泥提取EPS前后扫描电子显微镜观察,从宏观上佐证了表面特性和分子结构分析.结果表明,强酸条件下(pH 3),可提取EPS比中性条件下时下降50%,其中多糖下降约30%,蛋白质下降约65%~70%;在强碱条件下(pH 11),可提取EPS比pH 7时升高20%~30%,其中多糖升高约15%,蛋白质升高20%~50%.红外光谱分析表明,羟基在强酸强碱条件下均发生了变化,羧酸、多聚糖、酚类和蛋白质肽键在强酸条件下(pH 3)消失;胶体滴定结果表明,2种污泥提取EPS表面负电荷随pH上升而下降;扫描电镜分析表明,相对于碱性条件下,酸性条件使活性污泥中微生物细胞更易于破碎.pH值可改变活性污泥EPS组分、浓度以及其中基团组成,从而改变EPS表面特性,最终导致污泥状态改变.  相似文献   

14.
好氧活性污泥胞外聚合物的影响因素研究   总被引:2,自引:0,他引:2  
研究了4种活性污泥处理工艺和两种污泥培养基质对好氧活性污泥胞外聚合物(EPS)的影响,包括对EPS总量和组分的影响。EPS的提取总量以TOC来表示,并以DNA的浓度来衡量提取过程中细胞裂解的程度。结果发现,处理工艺不同,导致EPS的含量和组成不相同,主要体现在蛋白质和多糖含量比的不同;淀粉基质培养的污泥的EPS总量平均值比葡萄糖基质培养的污泥的EPS总量平均值略高一些,它们都比实际污水处理厂污泥的EPS含量高。  相似文献   

15.
活性污泥胞外聚合物提取方法的研究   总被引:1,自引:0,他引:1  
对两种不同来源的活性污泥中EPS的提取效率进行了研究,采用的提取方法有NaOH法,阳离子交换树脂法(CER法),加热法和离心法。结果表明,CER法是两种污泥EPS提取中最有效的方法。经过16h的提取,EPS中DNA的含量分别为0.73%和1.61%,这表明EPS的提取没有受到胞内物质的污染。两种污泥EPS的提取量分别为74mg/gVSS和80mg/gVSS,其中多糖和蛋白质是EPS的主要成分。在研究中,CER法最佳提取时间为8h,高搅拌强度和CER投加量都有利于EPS提取量的增加。  相似文献   

16.
活性污泥胞外多聚物提取方法的比较   总被引:15,自引:0,他引:15  
活性污泥胞外多聚物(EPS)的定量与其提取方法密切相关。基于文献报道的提取方法,采用超声、加热、甲醛加碱等6种方法对活性污泥的EPS进行提取。测定了其中多糖、蛋白质及DNA含量,以评价提取效率及对细胞的破坏程度。结果表明,各种方法提取活性污泥EPS中的蛋白质均多于多糖,且对细胞破坏程度均较小。加热法,甲醛加碱法和超声提取法的提取效率较高,所得多糖和蛋白质含量之和分别为94.30,72.33和56.55mg/gVSS(挥发性悬浮物);通过对不同超声功率和时间的比较,表明在较低功率(25 ̄50W)超声,提取效率变化不大,最佳超声提取时间为4min。  相似文献   

17.
为探讨厌氧氨氧化反应的快速启动过程及胞外聚合物(extracellular polymeric substances,EPS)在厌氧氨氧化颗粒污泥中的空间分布,采用厌氧序批式反应器(anaerobic sequencing batch reactor,ASBR)接种活性污泥成功启动厌氧氨氧化反应.结果表明稳定运行时,NH_4~+-N、NO_2~--N去除率均达到99%以上,TN去除率为89.87%±0.43%,总氮(TN)去除负荷达到1.7kg·(m~3·d)~(-1).NH_4~+-N与NO_2~--N的消耗量和NO_3~--N生成量之间的比例关系为1∶(1.32±0.08)∶(0.24±0.03).反应器运行中,出水pH和NO_3~--N浓度可作为反应性能的指标,快速判断反应器运行情况.蛋白质为厌氧氨氧化颗粒污泥EPS的主要组分,蛋白质(PN)和多糖(PS)的含量分别为(59.61±5.64)mg·g~(-1)、(12.21±2.04)mg·g~(-1),PN/PS为4.88±1.39.β-D-呋喃葡萄糖和死细胞集中分布在颗粒污泥最外层;活细胞、蛋白质、脂类、α-呋喃葡萄糖和α-甘露糖遍布整个颗粒污泥,但主要集中在外侧.蛋白质和脂类构成了厌氧氨氧化颗粒污泥的骨架,厌氧氨氧化菌分布在蛋白质和脂类中间.  相似文献   

18.
研究了膜生物反应器(MBR)中间歇排泥以及连续排泥条件下污泥停留时间(SRT)与污泥胞外聚合物(EPS)变化的关系。试验结果表明:在间歇排泥方式下的污泥EPS都明显高于连续排泥方式下的。随着SRT的增加,附着型EPS浓度先是稍有减少,之后快速增加,溶解性EPS则增加。  相似文献   

19.
袁冬琴  王毅力 《环境科学》2012,33(10):3522-3528
针对活性污泥的胞外聚合物(EPS),采用阳离子交换树脂(CER)法和离心/超声波法对总EPS和分层EPS(由外至内依次为slime,LB-EPS,TB-EPS)分别进行提取,测定EPS中多糖(PS)、蛋白质(PN)和DNA的含量,并对各EPS溶液的理化特性随溶液条件的变化特征进行了探讨.结果表明,EPS的化学组分(PS、PN和DNA)在TB-EPS层中含量最高,其亲水性组分的含量高于疏水性组分,但PN的疏水比高于PS.各层EPS中PS/PN的值对其Zeta电位和等电点有重要的影响.其中,PS/PN越高,各层EPS的Zeta电位越小,分层EPS的等电点越高.各种EPS溶液pH的增加导致其Zeta电位基本呈下降趋势,对应的等电点分别为pH总EPS=2.9、pHslime=2.2、pHLB-EPS=2.3、pHTB-EPS=1.3.离子强度的增加可以导致EPS溶液的电导率呈直线上升,对应的Zeta电位却迅速增加然后趋于稳定,但并未出现电位逆转现象.此外,升高温度(<40℃)可以降低各种EPS溶液的表观黏度,并在40~60℃之间时逐渐趋于稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号