首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
采用改良A2/O-BAF双污泥系统处理低C/N比生活污水,为提高碳源利用率,研究了两段进水(预缺氧段和缺氧段)对反硝化除磷脱氮的影响,同时根据COD的物料衡算公式,分析评价了不同进水比下,碳源的利用情况.结果表明当分段进水比为7:3时,平均进水COD、NH4+-N、TN、TP浓度分别为174.99、58.19、59.10、5.15 mg·L-1,出水COD、NH4+-N、TN、TP浓度分别为29.48、4.07、14.10、0.44 mg·L-1,去除率分别为82.12%、92.76%、75.45%、91.20%;系统中反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)为98.81%,此时系统反硝化除磷脱氮最佳,同时碳源的有效利用率达85.77%,平衡百分比为92.33%.通过优化分段进水,碳源被有效利用,提高了同步脱氮除磷效率,为改良A2/O-BAF双污泥系统处理低C/N比污水提供理论依据.  相似文献   

2.
生活污水与人工配水对好氧颗粒污泥系统的影响   总被引:2,自引:2,他引:0  
李冬  王樱桥  李帅  张杰  王玉颖 《环境科学》2019,40(4):1878-1884
在R1、R2两组序批式活性污泥反应器(SBR)中接种污水处理厂回流污泥,分别以人工配水和实际生活污水为进水,研究常温下(20~30℃)进水水质对好氧颗粒污泥工艺的启动以及温度变化对系统稳定运行的影响.结果表明,R1、R2分别历时25 d、42 d启动成功,颗粒污泥稳定后,其平均粒径分别达到1200 μm、750 μm,R1、R2内出水COD、TP、TN的平均浓度分别为22.53、0.48、7.70 mg·L-1和49.73、0.49、14.55 mg·L-1,去除率分别为90.60%、90.34%、87.85%和79.74%、88.59%、79.25%.当温度降低至5~16℃时,R1内颗粒污泥出现解体现象,COD及TP去除能力基本不变,出水TN平均浓度升高为29.03 mg·L-1,平均去除率降低至48.81%,脱氮性能受到抑制;R2内颗粒污泥运行稳定,出水COD、TP和TN平均浓度分别为14.31、0.50和12.24 mg·L-1,平均去除率分别为92.42%、93.37%、86.28%,出水满足《城镇污水处理厂污染物排放标准》一级A标准.采用人工配水和生活污水均能成功培养出好氧颗粒污泥,生活污水培养成熟的好氧颗粒污泥结构更密实,当温度降低至5~16℃时,能够有效抑制丝状菌的膨胀,抗冲击负荷能力强.  相似文献   

3.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

4.
随着城镇生活污水排放标准的日益严格,现有城市污水处理厂普遍面临提标改造的挑战,较多污水处理厂采用三级脱氮工艺降低出水中氮素含量.本研究以磁混凝预处理后的生活污水为研究对象,采用厌氧氨氧化工艺作为三级脱氮工艺,构建含有生物膜和絮体污泥的UASB反应器,处理A/O(二级生化单元)出水,研究串联、分流进水以及回流等条件下系统的脱氮及有机物去除性能,并通过微生物群落分析揭示各阶段的菌群结构变化.结果表明,当UASB串联A/O时,系统出水氨氮、TN和COD分别为1.21、10.02和30.00 mg·L-1.当进水分流比为15%时,提升了UASB的脱氮速率(从0.04升高至0.06 kg·m-3·d-1),UASB分别贡献了系统TN、NH4+-N和COD去除总量的23.4%、20%和20.7%,当系统出水回流到A区时,能进一步降低出水污染物浓度,NH4+-N仅为1 mg·L-1,TN为12.03 mg·L-1.微生物群落结构分析结果表明,在A/O反应器内Proteobacteria为主要菌门,UASB内Planctomycetes门实现富集,生物膜中Planctomycetes丰度为1.93%~8.39%,厌氧氨氧化细菌(以Candidatus Kuenenia为代表)在生物膜和污泥絮体中丰度分别为0.77%~2.19%和0.01%~1.49%.本研究结果表明,基于厌氧氨氧化的三级脱氮工艺能够实现生活污水的深度脱氮,在不增加曝气与碳源投加成本的同时高效去除氨氮、总氮,可为城市生活污水处理厂改造升级提供技术支撑.  相似文献   

5.
王文琪  李冬  高鑫  张杰 《环境科学》2021,42(9):4406-4413
采用生活污水接种人工配水下成熟短程硝化反硝化除磷颗粒,通过不同好氧/缺氧时长联合分区排泥优化调控短程硝化反硝化除磷系统运行.结果表明,调控好氧/缺氧时长联合分区排泥可实现系统的稳定运行.后期稳定期出水COD浓度在50mg·L-1以下,出水TN浓度低于15mg·L-1,TN去除率达83%左右并保持平稳,出水P浓度均在0.5mg·L-1以下,平均去除率为93.72%.同时,分区排泥(70%顶部污泥和30%底部污泥)可作为筛选微生物的途径,维持了良好的亚硝化和除磷性能,使粒径分布更为集中,并保证氨氧化菌(ammonia oxidizing bacteria,AOB)和反硝化聚磷菌(denitrifying phosphate accumulating organisms,DPAOs)的生长优势.缺氧时长的增加提高了缺氧异养菌的生长速率,使得缺氧异养菌分泌出更多的EPS,确保了颗粒污泥性状的改善和后续维持稳定.  相似文献   

6.
张玉君  李冬  王歆鑫  张杰 《环境科学》2021,42(9):4383-4389
为了探究间歇梯度曝气下污泥龄对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的影响,研究短程硝化内源反硝化除磷系统对于处理低C/N比生活污水的优势作用,本文采用SBR反应器培养好氧颗粒污泥,实验进水采用实际生活污水.结果表明,在SRT由50 d逐渐降低至30 d过程中,比氨氧化速率由3.16 mg·(g·h)-1增加至4.38 mg·(g·h)-1,比亚硝酸盐氧化速率由3.4 mg·(g·h)-1降为1.8 mg·(g·h)-1左右,可知NOB活性降低约44%,从而使系统实现了短程硝化.当SRT为30 d时,由典型周期实验可知亚硝酸盐最大积累量可达6.93mg·L-1.由于系统中污泥浓度随SRT的减少而略有降低,因此在反应进行至40 d左右时根据DO曲线采取降低曝气量的策略,最终SRT为30 d时系统出水COD浓度为40.76 mg·L-1,TN浓度为12.4 mg·L-1,TP浓度为0.31 mg·L-1,强化了系统中C、N和P的同步去除,最终得到了稳定运行的短程硝化内源反硝化除磷系统.同时好氧颗粒污泥EPS含量与SRT呈现负相关性,蛋白质含量由污泥龄为50 d的66.7 mg·g-1升为30 d的95.1mg·g-1,多糖保持在12.1~17.2 mg·g-1的范围内,说明SRT的降低对蛋白质含量的影响较多糖大,当SRT为30 d时,PN/PS值保持在6.2左右,好氧颗粒污泥在该条件下仍能保持较好的结构稳定性.  相似文献   

7.
为考察有机物对厌氧氨氧化生物膜反应器脱氮效能的影响,采用MPN(most probable number)法和高通量测序技术,结合处理效果数据,对比分析了有无有机物影响下生物膜中微生物群落差异.试验表明:在进水有机物(COD)为30和60 mg·L-1作用下,总氮去除率与进水COD为0 mg·L-1时的84.10%相比较分别提高了5.08%和10.41%;COD为90 mg·L-1时,总氮去除率降至89.05%.由MPN法和高通量测序结果可知,相对于无有机物,60 mg·L-1有机物使反应器中反硝化菌数量增加,浮霉菌门和变形菌门丰度明显提高,且微生物群落更加丰富.有机物能影响反应器中厌氧氨氧化、反硝化脱氮效能及微生物菌落丰度,适宜的有机物浓度可使厌氧氨氧化与反硝化作用有效耦合,提高反应器的脱氮效能.本研究可为厌氧氨氧化生物膜反应器处理含有机物的实际污水提供参考价值.  相似文献   

8.
本研究进水模拟了污泥消化液、晚期垃圾渗滤液等高氨氮低碱度低碳氮比的废水,在碱度缺乏(不足以实现完全短程硝化)条件下获得了稳定的半短程硝化,并通过曝气量和污泥浓度(MLSS)双因素调控,实现了半短程硝化的高效经济运行.研究表明,进水碱度缺乏条件下短程硝化体系出水亚硝氮/氨氮浓度比值y与进水HCO3-∶NH4+物质的量的比x之间存在化学计量关系 y=x/(2-x),当进水HCO3-∶NH4+物质的量的比为1,即进水碱度/氨氮浓度(mg·L-1)比值为3.6时可实现半短程硝化,并通过游离氨(FA)和游离亚硝酸(FNA)联合抑制能够实现稳态运行,亚硝酸盐积累率平均可达95%以上.实验探究了MLSS和曝气量对短程硝化反应器曝气经济性和氨氧化率的影响,通过平衡两因素作用,在保证处理效果的同时最大程度提升了反应系统的曝气经济性:当曝气量为36 L·h-1和MLSS为2243 mg·L-1时,反应器的曝气经济性较好,可节省约40%曝气量,且能维持较高的容积氨氮负荷(0.93 kg·m-3·d-1).  相似文献   

9.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

10.
基于硫自养反硝化作用,寻求一种经济、快速、高效地污水脱氮工艺,采用硫磺/硫铁矿组合进行自养反硝化脱氮试验,以低C/N市政污水为处理对象,分别考察温度,硫磺与硫铁矿体积比和HRT等理化因素对反应器脱氮性能的影响.结果表明,在进水TN质量浓度约40 mg·L-1条件下,1号反应器最佳HRT为2.5 h,TN去除率平均稳定在72.2%,出水TN约10.55 mg·L-1;2号反应器最佳HRT为3.5 h,TN平均去除率约67.8%,出水TN平均稳定至12.90 mg·L-1;3号反应器最佳HRT为3.5 h,TN平均去除率60.6%,出水TN稳定在15.00 mg·L-1左右.硫磺/硫铁矿自养反硝化系统比硫铁矿自养反硝化系统启动快;该系统脱氮效率随着硫磺与硫铁矿体积比减小而降低;该系统脱氮性能对温度的变化并不敏感,脱氮性能优于单独以硫铁矿为硫源的自养反硝化系统;系统中硫自养反硝化过程的主要功能菌属是SulfurimonasThiobacillus,在3个反应器所占比例为1号 > 2号 > 3号.  相似文献   

11.
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2018,39(11):5074-5080
在污水处理厂室外,以A/O除磷工艺出水为基质,启动全程自养脱氮(CANON)生物滤柱反应器.反应器启动成功后,进水中投加葡萄糖作为有机碳源,启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)工艺,研究SNAD生物滤柱处理城市生活污水的效果.结果表明,第119~128 d,CANON工艺氨氮去除率大于95%,最大出水总氮浓度为13. 0 mg·L~(-1),超过了北京市地标一级A排放标准.第129 d在进水中投加葡萄糖30 mg·L~(-1)启动SNAD工艺,第133~187 d时SNAD工艺总氮去除率在85%左右,出水总氮浓度为5. 5~7. 3 mg·L~(-1).第195d观察到滤柱出现堵塞现象,在第196 d对反应器进行反冲洗,反冲洗后的30d期间,反应器总氮去除率大于85%,出水总氮浓度维持在6. 2~7. 2 mg·L~(-1).与CANON工艺相比,SNAD工艺提高了总氮去除率,将出水总氮浓度降低了6 mg·L~(-1),使出水氨氮和总氮浓度达到北京市地标一级A标准.  相似文献   

12.
在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中分别投加葡萄糖和丙酸钠启动SAD工艺.结果表明,常温条件(13~22℃)下,进水投加30 mg·L~(-1)葡萄糖,SAD工艺耦合效果良好,平均出水总氮浓度为6.41 mg·L~(-1).相较于厌氧氨氧化工艺,SAD工艺出水总氮浓度降低了42%;低温环境(10~13℃)中,投加30 mg·L~(-1)葡萄糖,SAD工艺稳定性受到破坏并向反硝化工艺转变;常低温环境(10~22℃)中,基质中投加30 mg·L~(-1)丙酸钠,SAD工艺均有良好的处理效果,平均出水总氮浓度为6.54mg·L~(-1),丙酸钠对低温SAD工艺影响较小.  相似文献   

13.
高氨氮对具有回流的PN-ANAMMOX串联工艺的脱氮影响   总被引:3,自引:3,他引:0  
李祥  崔剑虹  袁砚  黄勇  袁怡  刘忻 《环境科学》2015,36(10):3749-3755
采用具有气升回流的部分亚硝化-厌氧氨氧化串联工艺研究了进水氨氮浓度对其氮素转化特性和微生物群落的影响.结果表明,在恒定氮容积负荷2.8 kg·(m3·d)-1的条件下,当进水氨氮浓度上升到700 mg·L-1时,好氧区和厌氧区的p H值波动很小,FA浓度分别维持在5 mg·L-1、10 mg·L-1左右,未对功能微生物产生抑制.好氧区的亚硝酸盐生成速率稳定在1.5kg·(m3·d)-1,厌氧区的氮去除速率稳定在31.49 kg·(m3·d)-1,联合工艺的总氮去除速率稳定在1.67 kg·(m3·d)-1.当进水氨氮浓度上升到900 mg·L-1时,各区域FA和FNA浓度才出现上升,联合工艺的总氮去除速率稳定在1.52 kg·(m3·d)-1.厌氧区出现亚硝酸盐的积累,厌氧氨氧化细菌的活性未出现明显的抑制现象.说明在联合工艺运行过程中,回流可有效地缓解各区域p H值的大幅波动,同时稀释了高氨氮浓度所形成的FA对功能微生物的毒性作用.  相似文献   

14.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

15.
周同  于德爽  李津  吴国栋  王骁静 《环境科学》2017,38(12):5162-5168
采用ASBR反应器通过改变单一基质浓度分别研究了NH_4~+-N和NO_2~--N对海洋厌氧氨氧化菌脱氮效能的影响及其动力学特性.结果表明,保持进水NO_2~--N为105.6 mg·L~(-1),当进水NH_4~+-N浓度提高至1 200 mg·L~(-1)时,海洋厌氧氨氧化反应器仍保持较好的脱氮能力,未受到明显的抑制作用,NO_2~--N的去除率稳定在80.70%左右;当进水NO_2~--N浓度提高至265.6mg·L~(-1)时,反应器开始受到明显的抑制作用,NH_4~+-N的去除率下降至63.01%左右,随着进水NO_2~--N浓度继续提高至305.6mg·L~(-1)时,NH_4~+-N的去除率进一步下降至43.93%左右.利用Haldane模型和Aiba模型拟合NH_4~+-N和NO_2~--N抑制作用的动力学特性,得到了NRRmax、KS、Ki这3个动力学参数及出水基质浓度与总氮容积负荷(TNRR)之间的关系,根据进一步分析可知,Haldane模型更适合描述NH_4~+-N抑制作用下的动力学特性,Aiba模型更适合描述NO_2~--N抑制作用下的动力学特性,并得到NH_4~+-N和NO_2~--N的出水抑制浓度分别为3 893.625 mg·L~(-1)和287.208 mg·L~(-1),为海洋厌氧氨氧化菌处理含海水污水提供了理论依据.  相似文献   

16.
以石油裂化催化剂废水为研究对象,采用电絮凝作为废水的预处理单元,研究CANON工艺的启动及脱氮性能.结果表明:电絮凝对原水浊度的去除率达到98.7%±1.2%,对COD去除率达到32.3%±4.5%.利用人工模拟高氨氮废水成功启动CANON工艺,TN去除率最高达到62.0%,TN去除负荷最高达到0.19 kg·m~(-3)·d~(-1)(以N计).使用石油裂化催化剂废水对微生物进行了驯化,经过108 d的运行,微生物成功驯化。利用CANON工艺处理石油裂化催化剂废水,COD去除率为40.9%±13.2%,TN去除率为67.3%±12.7%,TN去除速率为(0.07±0.02)kg·m~(-3)·d~(-1)(以N计).反应器出水COD100 mg·L-1,NH_4~+-N10 mg·L~(-1),满足石油化工企业污水的排放标准(GB8978—1996).  相似文献   

17.
微气泡臭氧催化氧化-生化耦合工艺深度处理煤化工废水   总被引:7,自引:1,他引:6  
刘春  周洪政  张静  陈晓轩  张磊  郭延凯 《环境科学》2017,38(8):3362-3368
采用微气泡臭氧催化氧化-生化耦合工艺对煤化工废水生化出水进行深度处理,考察耦合系统处理性能及不同臭氧投加量和进水COD量比值的影响.结果表明,微气泡臭氧催化氧化处理能够有效降解废水中难降解含氮芳香族污染物,去除部分COD并释放氨氮,显著提高废水可生化性,臭氧利用率接近100%,无需进行臭氧尾气处理;同时为生化处理提供充足溶解氧(DO),实现生化处理对COD和氨氮的进一步有效去除,生化处理无需曝气.在系统出水回流比为30%、臭氧投加量和进水COD量之比为0.44 mg·mg~(-1)的运行条件下,耦合系统处理性能较好.微气泡臭氧催化氧化处理对COD去除率为42.5%,臭氧消耗量与COD去除量比值为1.38 mg·mg~(-1),臭氧利用率为98.0%;生化处理对COD去除率为42.3%;耦合系统整体COD去除率为66.7%,最终平均出水COD浓度为91.5 mg·L~(-1),估算整体臭氧消耗量与COD去除量比值为0.68 mg·mg~(-1),具有较优的技术经济性能.  相似文献   

18.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

19.
污水处理厂CANON工艺小试   总被引:2,自引:2,他引:0  
李冬  赵世勋  王俊安  朱金凤  关宏伟  张杰 《环境科学》2017,38(11):4673-4678
在污水处理厂进行CANON工艺小试.试验以污水处理厂A/O除磷工艺出水为基质,启动并运行CANON生物滤柱.第48 d时,反应器氨氮去除率连续10 d大于90%,总氮去除率在70%以上,CANON生物滤柱启动成功.第49~129 d,反应器内部DO控制在较低水平(0.2~0.5 mg·L~(-1)),出水几乎不含氨氮.最大出水总氮浓度为15.6 mg·L~(-1),超过一级A排放标准,硝化细菌(NOB)出现了过量增殖的现象.第129、169和213 d对滤柱进行反冲洗,使得反应器长期总氮去除率大于70%,出水总氮浓度小于12 mg·L~(-1).出水氨氮和总氮浓度达到了一级A标准,硝化细菌得到了有效抑制.结果表明,反冲洗几乎不会影响滤层结构,对滤料生物膜厚度和功能微生物活性影响较小,对硝化细菌抑制作用较大.在实际工程应用中可以通过定期反冲洗维持CANON工艺稳定运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号