共查询到16条相似文献,搜索用时 62 毫秒
1.
江苏省代表性水源地抗生素及抗性基因赋存现状 总被引:1,自引:5,他引:1
抗生素和抗生素抗性基因(antibiotic resistance genes,ARGs)是环境中重要的新兴污染物,为探明江苏省代表性水源地多种环境介质中抗生素和ARGs的污染水平及影响因素,于2018年12月和2019年6月采集苏北、苏中和苏南的5处代表性集中式饮用水水源地取水口处水体、表层沉积物和石相附着生物膜样品,对3种介质中10种代表性抗生素浓度、1类整合子酶基因intl1和7种代表性ARGs的绝对丰度进行检测分析.结果表明,5处水源地中目标抗生素和ARGs处于较低赋存水平.磺胺类抗生素在水体、表层沉积物和附着生物膜中的赋存量分别为NF(未检出)~37.4 ng·L-1,NF~47.3 ng·g-1和NF~3759.1 ng·g-1.喹诺酮类抗生素在3种介质中的浓度和含量分别为NF~5.3 ng·L-1、0.4~32.5 ng·g-1和NF~4220.9 ng·g-1.目的ARGs中,sul1、sul2、tetW和tetQ的检出率为100%,其中磺胺类抗生素ARGs,即sul1和sul2基因丰度最高.表层沉积物和附着生物膜中的ARGs丰度相当,高于水体中ARGs的丰度.网络分析结果表明,所属拟杆菌门、变形菌门、厚壁菌门、疣微菌门和放线菌门的细菌最有可能成为代表性水源地中ARGs的潜在宿主,在ARGs的扩散和转移过程中起重要作用.研究结果对于江苏省集中式饮用水源地水环境质量状况评估和水质安全保障具有一定的科学指导意义. 相似文献
2.
微塑料和抗生素抗性基因都是环境中的新型污染物,两者的复合污染引发了一定的生态环境风险,成为近年的研究热点.本文采集了城市郊区河水,添加不易降解微塑料(聚氯乙烯,PVC)和水溶性微塑料(聚乙烯醇,PVA)进行曝气培养实验,采用高通量定量PCR技术,研究微塑料对河水抗生素抗性基因的影响.结果表明,空白对照河水、添加PVC的河水和添加PVA的河水抗性基因种类数分别为71、 87和95种,微塑料的存在显著增加了河水抗生素抗性基因种类,进而可能增加河流生态风险;曝气培养的河水中抗性基因的种类数和丰度有所减少,但是相对于空白对照组(2.8×109 copies·L-1),添加具有水溶性的微塑料仍能显著增加河水抗性基因丰度(8.1×109 copies·L-1),并且抗生素抗性基因丰度与可移动遗传元件呈显著正相关关系,说明可移动遗传元件可能通过基因横向转移机制影响抗生素抗性基因的赋存与演变. 相似文献
3.
废水处理系统中抗生素抗性基因分布特征 总被引:5,自引:7,他引:5
废水处理厂被认为是抗生素抗性基因(ARGs)的重要污染源.为探究抗性基因在进水状况复杂的废水处理厂沿程的分布变化特征,选取以生产抗生素为主导行业的某化工园区废水处理厂,使用实时荧光定量PCR对废水处理厂沿程ARGs的种类、丰度变化进行研究.结果表明,废水处理厂水体中检出16种ARGs,四环素类、磺胺类ARGs为废水处理厂中占主导的抗性基因,并检出可移动遗传元件int I1,其丰度与磺胺类抗性基因的丰度(P 0. 05,r 0. 95)存在相关性,表明可移动遗传元件int I1可能促进了磺胺类抗性基因的迁移和转化.园区医药企业以合成大环内酯类抗生素为主,由于选择性压力,园区废水中,erm B抗性基因的绝对丰度远远高于其他废水中erm B的绝对丰度.废水经过废水处理厂生物处理工艺,总ARGs绝对丰度下降了1. 16个数量级,经过芬顿工艺处理后,总ARGs绝对丰度下降了2. 46个数量级,表明该废水处理工艺中深度处理工艺对ARGs的去除效果优于生物处理.高浓度、可移动的ARGs已经存在于水体中,如果没有得到有效治理,从废水处理厂排出,将给环境带来高度风险. 相似文献
4.
5.
为揭示北京地区蔬菜土壤中抗生素抗性基因与可移动元件的分布特征应用高通量荧光定量PCR方法(HT-qPCR),选取北京3个区5个蔬菜基地进行调查研究.在蔬菜基地土壤中共检测到92~121种抗生素抗性基因,4~6种可移动元件,抗生素抗性基因及可移动元件按区分开.各蔬菜基地中共有且丰度较高的抗生素抗性基因型为:多重耐药类oprD、acrA-04和acrA-05,大环内酯类-林肯酰胺类-链阳性菌素B类抗生素抗性基因(MLSB)酰胺酶类fox5,万古霉素类vanC-03;共有可移动元件为intI1.蔬菜基地土壤中共检测到7种抗生素,含量较高的抗生素种类为恩诺沙星(ENR)、诺氟沙星(NOR)、土霉素(OTC)、磺胺甲噁唑(SMX).顺义区S1与S2蔬菜基地土壤中抗生素的种类与丰度均最高,依次是通州区T蔬菜基地、昌平区C2与C1蔬菜基地.相关性分析表明,蔬菜基地土壤中抗生素抗性基因丰度与抗生素丰度存在显著正相关(P <0.05).研究结果可为后续控制抗生素抗性基因的传播提供基础理论数据. 相似文献
6.
人工湿地去除畜禽养殖废水中磺胺类抗生素抗性基因研究 总被引:1,自引:0,他引:1
采用垂直潜流人工湿地研究了畜禽养殖废水中磺胺类抗生素抗性基因(ARGs)在人工湿地中的去除及累积情况.结果表明,畜禽养殖废水中的3种磺胺类ARGs(sul Ⅰ,sul Ⅱ及sul Ⅲ)的平均绝对含量分别为1.15×1010、7.51×1010及7.51×107 copies/L.通过湿地系统处理后sul Ⅰ、sul Ⅱ及sul Ⅲ的平均去除率分别为89%、88%及84%.在系统运行末期,湿地表层土壤和底层土壤中sul Ⅰ、sul Ⅱ及sul Ⅲ的绝对拷贝数和相对表达量均有明显的升高.结果表明,人工湿地系统可有效降低畜禽养殖废水中ARGs含量. 相似文献
7.
畜禽粪便中的抗生素及其抗性基因(ARGs)具有潜在的生态风险.为揭示宁夏养鸡场鸡粪和养殖场周边土壤中抗生素和ARGs的分布特征,以宁夏12家不同规模蛋鸡养殖场中鸡粪、周边及施用鸡粪的土壤为研究对象,采用超高效液相色谱-串联质谱法和高通量荧光定量法进行调查研究.结果表明:①鸡粪中四环素类、氨基糖苷类和磺胺类是优势抗生素.不同养殖期鸡粪中抗生素种类和含量不同,育雏期抗生素种类较多和平均含量较高,初产期相反.②周边土壤中仅距离养鸡场20 m处检测到少量抗生素,养殖场对周边土壤中抗生素的分布影响较小;施用鸡粪的土壤中喹诺酮类抗生素含量明显增加.③鸡粪中共检测到ARGs亚型132~168种,主要是氨基糖苷类和四环素类ARGs.育成期ARGs数目最多,初产期最少;育雏期各类ARGs总丰度最高,终产期相反.所有养殖期鸡粪中共存ARGs有110种.④养鸡场周边及施用鸡粪的土壤中共检测到ARGs亚型23~105种,其中氨基糖苷类ARGs数目最多,其次是多药类.养殖场周边土壤中ARGs数目和相对丰度随距养殖场距离的增加而逐渐减少;施用鸡粪的土壤中ARGs数目和相对丰度都明显增高,但低于距离养殖场20 m的土壤.⑤鸡粪中β-内酰胺酶类、氨基糖苷类和大环内酯类-林肯酰胺类-链阳性菌素B类(MLSB) ARGs都存在水平移动风险;土壤中氯霉素类ARGs存在水平移动风险.鸡粪中ARGs与其对应抗生素含量间相关性不显著.⑥不同类型ARGs之间具有相关的共现性:鸡粪中氨基糖苷类ARGs相对丰度与β-内酰胺酶类和可移动元件(MGEs)、多药类与万古霉素类等均呈显著正相关;土壤中氨基糖苷类ARGs相对丰度与四环素类、万古霉素类、磺胺类和MLSB类、四环素类与MLSB类等呈极显著正相关.土壤中各类ARGs相对丰度间的共现性明显强于鸡粪.本研究可为养鸡场选址、蛋鸡规模化养殖抗生素种类及剂量的选择和鸡粪施用提供理论依据. 相似文献
8.
微塑料对河口沉积物抗生素抗性基因的影响 总被引:2,自引:12,他引:2
微塑料和抗生素抗性基因都是环境中的新兴污染物,也是近年来的研究热点.为探究微塑料对河口沉积物抗生素抗性基因的影响,在沉积物中添加3种不同的微塑料进行培养实验,主要采用高通量定量PCR方法研究河口沉积物抗性基因种类、丰度、多样性及其变化情况.结果表明,微塑料显著改变了沉积物中抗生素抗性基因结构组成,两种难降解微塑料PVC和PE使得沉积物抗生素抗性基因组成结构显著改变,而可溶性微塑料PVA使得沉积物抗生素抗性基因种类数显著减少;添加PVC、PE和PVA微塑料的沉积物抗生素抗性基因的绝对丰度显著增加,分别为4. 1×10~9、8. 1×10~9和2. 0×10~9copies·g~(-1),添加PE微塑料的沉积物抗生素抗性基因丰度增加了近一个数量级,微塑料显著增加了沉积物抗生素抗性基因的绝对丰度; OLS回归分析显示,抗生素抗性基因丰度与转座子、整合子基因显著正相关,表明可移动遗传元件可能促进了抗生素抗性基因的迁移、传播和扩散. 相似文献
9.
为了研究抗生素菌渣堆肥过程中抗生素抗性基因(ARGs)的变化情况,以林可霉素菌渣-糠醛渣堆肥为研究对象,以污泥-糠醛渣堆肥为对照.运用荧光定量PCR技术检测到了堆肥过程中lnuA-01、sul1、ermA、ermB、ermC等5种林可霉素抗性基因和整合子基因intI1的变化情况.结果表明,堆肥化处理可以降解99%的林可霉素残留,两者堆肥ARGs总量绝对丰度均有较大增加,而相对丰度降低5%~22%.同时发现林可霉素菌渣堆肥有助于intI1的富集,表明林可霉素菌渣堆肥存在生态风险.冗余分析显示,ARGs变化受环境因子影响严重,影响顺序为pH值 > 林可霉素残留 > 温度 > C/N. 相似文献
10.
畜禽粪便是储存和传播抗生素抗性基因(ARGs)的主要载体.为明确鸡粪和猪粪堆肥过程中ARGs和MGEs相对丰度的变化及影响其消减的关键环境因子,探索减少畜禽粪便堆肥中ARGs含量并降低其污染风险的有效方法,采用实时荧光定量PCR技术和16S rRNA高通量测序技术,测定了鸡粪和猪粪好氧堆肥75 d的过程中,不同阶段10种ARGs和7种可移动遗传元件(MGEs)的丰度变化和细菌群落变化,分析了ARGs和MGEs与细菌群落的相关性和堆体理化性质(温度、含水率、 pH和DOC)变化对ARGs和MGEs丰度的影响.结果表明,猪粪(PM)中ARGs和MGEs丰度显著高于鸡粪(CM).堆肥结束后,两种堆肥中9种ARGs和5种MGEs的相对丰度均显著降低,其中CM中3种ARGs(tetM、tetT和aacA)和4种MGEs(ISEcp1、IS1216、IS613和tnp614)的去除率达到99%; PM中9种ARGs[tetB(P)、tetL、tetM、tetO、tetT、aacA、aadD、aphA3和sat4]及4种MGEs(ISEcp1、IS26、IS1216和tnp614)去除率均达到99%... 相似文献
11.
中药渣与城市污泥好氧共堆肥的效能 总被引:3,自引:3,他引:3
以中药渣与城市污泥为原料进行共堆肥实验,考察了不同物料质量配比与中药渣不同时间投加条件下,堆体在堆肥过程中温度、有机质、挥发氨、蛋白酶活性等理化指标的变化情况,确定了最佳的物料质量配比与中药渣投加时间;同时探讨了中药渣投加对堆肥过程中溶解性有机质(DOM)及微生物群落结构的影响.结果表明,中药渣作为外加碳源投加后(60 g中药渣+300 g污泥),提高了堆体的温度,减少了氨的挥发,且提高了堆体中蛋白酶的活性,氨的挥发量减少了35.9%,蛋白酶的含量提高了80.5%.同时中药渣可作为调理剂,在堆肥前期投加,促进了有机质的降解,从而加快了堆肥的进程.而通过对DOM的紫外-可见和荧光光谱特征分析表明,投加中药渣有利于提高堆肥的腐殖化程度;同时通过磷脂脂肪酸(PLFA)分析可以发现,投加中药渣后使得堆体中革兰氏阴性菌与真菌的数量有所提高. 相似文献
12.
13.
废水处理系统被认为是水环境中抗生素抗性基因(ARGs)的重要污染源.为探究ARGs在废水处理系统中的分布特征和去除情况,选取某精细化工园区内的制药废水处理系统和园区综合性废水处理系统,使用PCR和实时荧光定量PCR对不同处理单元中ARGs的存在情况和丰度变化进行研究.在两个系统进水中分别检出了10种和15种ARGs,其中以四环素类和磺胺类ARGs居多,并首次检出了dfrA13基因.进水中sulⅠ和sulⅡ基因的丰度最高,随后依次是dfrA13、tetQ、floR、tetO和tetW基因.制药废水处理系统使总ARGs浓度上升了0.21个数量级,出水汇入园区综合性废水处理系统再次处理,其对综合性废水处理系统进水中总ARGs的贡献率为5.05%.综合性废水处理系统使总ARGs浓度下降了1.03个数量级,残留ARGs同最终出水一起直接排海,对近海环境中微生物群落的潜在影响有待深入研究. 相似文献
14.
荒漠绿洲农田生态系统是干旱区环境下人类活动显著的复合生态系统.土壤微生物抗生素抗性与人类健康和生态平衡关系密切.研究荒漠绿洲环境不同土地利用类型模式下土壤抗生素抗性基因的多样性、分布特征和影响因素,对于评估干旱区土壤环境健康风险,促进绿洲农业生态的发展具有重要意义.采用高通量测序和高通量定量PCR技术对荒漠绿洲土壤微生物的群落结构和抗生素抗性基因多样性开展了研究,旨在探究干旱区土壤抗性基因的分布特征及其驱动机制.结果表明,从沙漠边缘到绿洲,荒漠沙生植物土壤、棉花地土壤、玉米地土壤、芦苇地土壤和湖泊沉积物中抗生素抗性的种类和丰度显著增加,与土地利用变化关系密切,农田土壤是抗性基因的重要存储库;荒漠绿洲土壤微生物群落与抗生素抗性基因显著相关,硫杆菌属(Thiobacillus)、沙漠细菌属(Pontibacter)、诺卡氏菌属(Nocardioides)、耐盐微杆菌属(Salinimicrobium)、土壤红杆菌属(Solirubrobacter)和链霉菌属(Streptomyces)等是各类抗性基因重要的潜在携带者;干旱区土壤中重(类)金属元素和可移动基因元件,与微生物群落共同塑造了抗生... 相似文献
15.
垃圾填埋场抗生素抗性基因初探 总被引:2,自引:1,他引:2
不同环境介质中抗生素抗性基因普遍存在,但是在垃圾填埋场中抗生素抗性基因尚无相关报道.本实验以西安江村沟垃圾填埋场为研究对象,采集不同方位不同深度垃圾样品,分析垃圾理化性质,用荧光定量PCR检测磺胺类抗生素抗性基因(sulⅠ和sulⅡ)、抗氯霉素类抗生素抗性基因(cat)、β-内酰胺类抗生素抗性基因(bla-SHV),以及四环素类抗生素抗性基因(tet W)等5种抗生素抗性基因的含量,以相关性分析垃圾理化性质与抗性基因的关联.结果表明,5种抗生素抗性基因均存在于垃圾中,基因拷贝数(以干土计)最大值分别为:(3.70±0.06)×108copies·g-1(sulⅡ)、(9.33±0.06)×106copies·g-1(sulⅠ)、(2.27±0.08)×105copies·g-1(tet W)、(3.68±0.09)×104copies·g-1(bla-SHV)和(1.39±0.10)×104copies·g-1(cat),说明垃圾填埋场是抗生素抗性基因潜在的储存库.抗性基因sulⅠ、sulⅡ和cat与含水率呈明显的正相关,同时sulⅠ和cat基因含量与p H值呈负相关. 相似文献