首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
在2018年9月14~23日选取了典型光化学污染期间,在长三角重点城市杭州市城区开展大气中挥发性有机物(VOCs)的加密观测.对80个有效样品分析结果表明,观测期间大气VOCs的122种化合物平均体积分数为(59.5±19.8)×10~(-9),含氧化合物(OVOC)是其中最主要的组分.用臭氧生成潜势(OFP)评估大气反应活性结果表明,观测期间OFP平均值为145×10~(-9),其中贡献最大的是芳烃和醛酮化合物.其大气VOCs整体活性水平与丙烯腈相当.运用正交矩阵因子(PMF)模型对VOCs进行源解析后,识别出杭州市大气VOCs的5个主要污染源,分别为二次生成(25.2%)、燃烧及工艺过程(27.2%)、溶剂使用(17.3%)、天然源(9.2%)和机动车排放(21.2%).本研究结果可为深入掌握杭州市VOCs污染特征以及科学制定防控措施提供技术支撑.  相似文献   

2.
宁波市大气挥发性有机物污染特征及关键活性组分   总被引:1,自引:0,他引:1       下载免费PDF全文
于2010年冬、春、秋三季,在宁波市3个采样点(市区、镇海站、北仑站)进行大气VOCs(挥发性有机物)样品的采集与分析,并对36种大气VOCs组分进行测量,分析宁波市大气VOCs组分组成及其时空分布特征. 用各组分的·OH反应速率表征其化学反应活性,以识别宁波市大气VOCs的关键活性组分. 结果表明:宁波市ρ(VOCs)(36种大气VOCs组分的平均质量浓度)在3个季节的平均值为198.2 μg/m3,主要成分为烷烃(48.6%)、芳香烃(33.6%)、烯烃(17.8%). ρ(VOCs)的季节变化表现为冬季(298.5 μg/m3)>秋季(174.1 μg/m3)>春季(122.0 μg/m3),空间上表现为市区(161.3 μg/m3)<镇海(225.0 μg/m3)<北仑(208.2 μg/m3). 宁波市大气VOCs的化学组成相对稳定,·OH平均反应速率常数和乙烯相当,总化学反应活性较强;对化学反应活性贡献最大的是烯烃,其体积混合比约占VOCs体积混合比的22%,但对VOCs化学反应活性的贡献达64%以上;关键活性组分为1-丁烯、反-2-丁烯、间,对-二甲苯、乙烯和戊烯.   相似文献   

3.
曹梦瑶  林煜棋  章炎麟 《环境科学》2020,41(6):2565-2576
2018年秋季在南京利用大气挥发性有机物(volatile organic compounds, VOCs)吸附浓缩在线监测系统(AC-GCMS 1000)对大气VOCs进行连续观测,以了解其化学特征、臭氧生成潜势和污染来源.结果表明,南京秋季大气VOCs体积分数为(64.3±45.6)×10-9,以烷烃(33.1%)、含氧挥发性有机物(OVOCs)(22.3%)及卤代烃(21.8%)为主.VOCs的昼夜变化呈"双峰型"变化特征,高值主要出现在清晨的06:00~07:00及夜间的18:00~20:00,主要受机动车排放及气象要素的共同影响.秋季南京VOCs的臭氧生成潜势(ozone formation potential, OFP)为267.1μg·m-3,主要贡献物种是芳香烃类化合物(55.2%)和烯烃类化合物(20.8%).PMF受体模型源解析确定5个VOCs来源,分别是交通排放(34%)、工业排放(19%)、LPG排放(17%)、涂料及有机溶剂挥发(16%)以及生物质燃烧和燃煤排放(14%),因此控制南京工业区秋季大气污染应主要着力于交...  相似文献   

4.
杭州湾北岸36种挥发性有机物污染特征及来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾北岸VOCs (挥发性有机物)的浓度水平、组成特征、反应活性和潜在来源,采用GC-FID在线监测系统对杭州湾北岸环境大气中的36种VOCs开展了为期1 a (2017年12月—2018年11月)的连续观测,采用LOH(VOCs的·OH消耗速率)和OFP (O3生成潜势)2种方法估算了大气VOCs的反应活性,并利用PMF (正定矩阵因子分解)和CPF (条件概率函数)模型分析其来源.结果表明:①φ(VOCs)小时平均值在冬季(26.47×10-9)最高,夏季(9.76×10-9)最低;全年φ(VOCs)小时平均值为21.24×10-9,其中烷烃、烯烃+炔烃、芳香烃、卤代烃的贡献率分别为33.24%、34.13%、15.63%、17.00%;φ(烷烃)、φ(芳香烃)和φ(卤代烃)呈较明显的昼夜变化特征,φ(烯烃)和φ(炔烃)无明显昼夜变化趋势.②大气VOCs的总LOH和OFP分别为9.39s-1和220.57μg/m...  相似文献   

5.
在2012年11~12月和2014年5~10月对上海市青浦区大气中58个VOCs物种进行了连续监测.结果表明,青浦区VOCs总体浓度水平较低,烷烃是其中含量最高的物种,百分含量为41.64%,其次为芳香烃25.66%、烯烃15.21%、乙炔7.71%.总VOCs的月变化特征表现为11月最高,10月最低;日变化特征表现为明显的双峰分布.通过OH消耗速率和臭氧生成潜势(OFP)计算,评估了VOCs的化学反应活性.结果表明,上海市青浦区大气VOCs的化学反应活性较强,且与VOCs浓度具有良好的一致性.OH消耗速率贡献最大的物种是烯烃56.92%和芳香烃45.24%,OFP贡献最大的物种是烯烃29.19%和芳香烃40.82%;对臭氧生成贡献最大的关键活性物种是乙烯、异戊二烯、甲苯、间/对二甲苯及丙烯等物质.利用化学质量平衡(CMB)模型分析了VOCs的来源,结果显示,上海市青浦区大气中VOCs主要有6个来源,分别是汽车尾气排放、LPG泄漏、涂料和溶剂挥发、植物排放、生物质燃烧、工业排放,其贡献率分别为43%、5%、16%、3%、14%、7%.  相似文献   

6.
臭氧污染在全国呈加剧态势,在非重点区域和非重点城市其相关研究薄弱.在湛江市选取3个采样点,使用苏玛罐和2,4-二硝基苯肼(DNPH)吸附管采样,并利用气相色谱-质谱/氢离子火焰检测器(GC-MS/FID)和高效液相色谱(HPLC)分析了101种挥发性有机物(VOCs),分析其主要组分和变化特点,计算VOCs的臭氧生成潜势(OFP),并利用正定矩阵因子分解模型(PMF)进行源解析.结果表明,采样期间湛江市φ(TVOCs)平均值为1.28×10-7,其中OVOCs占比最高,为52%,其次为烷烃(36%)、烯烃(7%)、卤代烃(2.42%)、芳香烃(1.61%)和炔烃(0.78%).VOCs组分日变化特征表明,芳香烃和烷烃早晚体积分数高而中午低,受光化学反应影响大;而OVOCs在光化学反应强烈的中午体积分数低而傍晚高,表明傍晚采样点附近OVOCs直接排放增多或受到上风向污染源输送的影响.湛江市TVOCs的OFP为3.28×10-7,优势物种为甲醛、1-丁烯、正丁烷、2-丁酮和乙醛.表征气团老化程度的X/E值和气团后向轨迹分析表明,采样期间,当受来自...  相似文献   

7.
上海秋季大气挥发性有机物特征及污染物来源分析   总被引:7,自引:0,他引:7  
综合分析了上海地区秋季典型月份挥发性有机物(VOCs)及其他痕量气体的污染水平及特征,VOCs平均小时浓度为63.64′10-9,非甲烷碳氢化合物(NMHCs)占挥发性有机物总量的67.43%;通过对VOCs物种浓度及特征比值分析发现研究区域大气老化现象明显;结合区域后向气流轨迹分析,考察了不同来源气流对区域污染特征的影响,发现陆地传输气流乙烷/乙炔(E/E)值较海上传输气流低,而两者的苯/甲苯(B/T)值没有明显差异.  相似文献   

8.
上海北郊大气挥发性有机物(VOCs)变化特征及来源解析   总被引:1,自引:0,他引:1  
叶露 《装备环境工程》2020,17(6):107-116
2019年1月1日到10月31日期间在上海北部郊区,采用在线气相色谱仪对58种VOCs定量检测,分析了大气VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP),应用因子分析法对VOCs来源进行了解析。结果表明,上海大气总VOCs体积浓度为25.79×10-9,其中烷烃占比63.2%,烯烃占比11.6%,芳香烃占比19.8%,炔烃占比5.4%。总VOCs体积浓度呈现夏季高,秋季低的季节变化特征。大气臭氧生成潜势为76.99×10-9,烷烃贡献率为22.1%,烯烃为37.5%,芳香烃为38.7%,炔烃为1.7%。VOCs特征物比值(V(TVOC)/V(NO_x)和T/B比值)法表明观测点为VOCs控制区,受周边工业区源和交通源影响。大气VOCs主要来源为机动车排放、工厂生产、燃料燃烧、工业溶剂挥发及天然源。  相似文献   

9.
为研究成都市城区大气VOCs季节变化特征,本研究在2018年12月至2019年11月对VOCs组分进行监测,并对VOCs的浓度水平、各化学组成、化学反应活性和来源进行分析.结果表明,成都市城区春、夏、秋和冬季VOCs的平均体积分数分别为32.29×10-9、 36.25×10-9、 40.92×10-9和49.48×10-9,冬季的浓度明显高于其他季节,春季和夏季的浓度水平相差不大,各季节VOCs的组分浓度水平有所差异,冬季烷烃占总VOCs的比例最大,可能受机动车排放的影响较明显;夏季和秋季含氧(氮)挥发性有机物占比远高于春、冬季,一次源的挥发排放和二次转化的生成贡献较大;成都市城区不同季节大气中VOCs平均浓度排名靠前的关键组分基本无变化,主要是C2~C4的烷烃、乙烯、乙炔及二氯甲烷等,可能受机动车尾气、油气挥发、溶剂使用和LPG燃料等影响明显,夏季丙酮以及乙酸乙酯等含氧有机物浓度贡献突出;根据·OH消耗速率和OFP计算可知关键活性物种主要为间/对-二甲...  相似文献   

10.
该文在2020年8月和10月对益阳市主城区大气挥发性有机物(VOCs)进行样品采集,对观测期间VOCs的浓度水平、组分特征、化学反应活性及来源解析进行分析。结果表明,观测期间益阳市TVOCs平均体积分数为28.67×10-9,VOCs最大组分为烷烃,占比24.49%。VOCs 体积分数最大的 3 个物种为丙酮、乙烷和丙烷。TVOCs 的臭氧生成潜势(OFP)和等效丙烯浓度分别为 67.81×10-9和6.76×10-9,其中生成O3的关键活性组分为烯烃和芳香烃,关键活性物种为乙烯、异戊二烯和间/对二甲苯。VOCs中二甲苯与乙苯的比值较低,表明主城区大气中VOCs气团是老化气团,同时受到其他区域远距离传输影响。正交矩阵因子分解(PMF)模型解析结果显示,主要有6个VOCs来源,依次为燃煤/生物质燃烧源(34%)、交通运输源(24%)、溶剂使用源(16%)、工业过程源(14%)、燃料挥发源(8%)和天然源(4%)。此外,基于 PMF 解析结果和每个 VOCs 物种的最大反应活性和二次气溶胶生产潜势(SO...  相似文献   

11.
佛山灰霾期挥发性有机物的污染特征   总被引:1,自引:8,他引:1  
2008年12月6~31日在佛山收集大气挥性有机物(VOCs),并进行定量分析.结果表明,灰霾期VOCs浓度较高,其中甲苯(68.93μg·m-3±37.78μg·m-3)最高,非灰霾期异戊烷(20.59μg·m-3±14.28μg·m-3)最高.灰霾期烷烃和炔烃日变化不明显,而烯烃和芳烃在中午有较大幅度降低,非灰霾天气日变化相对稳定.等效丙烯浓度灰霾期远高于非灰霾期,灰霾期等效丙烯浓度从高到低分别为甲苯、丙烯和乙烯,非灰霾期分别为丙烯、乙烯和1-丁烯,灰霾天气芳烃对等效丙烯浓度的贡献有明显增加.灰霾期苯浓度很高,对人体健康有较大的潜在危害.日变化规律和特征比值表明机动车尾气排放是灰霾期大多数VOCs(如异戊烷和乙炔)的主要来源,同时其它来源如溶剂挥发对VOCs苯和甲苯的贡献不容忽视.  相似文献   

12.
为探究开封市冬季大气挥发性有机物(VOCs)的污染特征及来源,基于2021年12月至2022年1月开封市生态环境局(城区)在线监测站获取的大气VOCs组分数据,阐述其VOCs污染特征和二次有机气溶胶生成潜势(SOAP),利用PMF模型解析出VOCs的来源.结果表明,冬季开封市ρ(VOCs)平均值为(104.71±48.56)μg·m-3,其质量分数最高为烷烃(37.7%),其次为卤代烃(23.5%)、芳香烃(16.8%)、 OVOCs(12.6%)、烯烃(6.9%)和炔烃(2.6%).VOCs对SOA的贡献平均值为3.18μg·m-3,其中芳香烃贡献率高达83.8%,其次为烷烃(11.5%);开封市冬季VOCs的最大人为排放来源为溶剂使用(17.9%),其次为燃料燃烧(15.9%)、工业卤代烃排放(15.8%)、机动车排放(14.7%)、有机化学工业(14.5%)和LPG排放(13.3%);溶剂使用源对SOAP的贡献率达到32.2%,其次是机动车排放(22.8%)和工业卤代烃排放(18.9%).可见,降低溶剂使用、机动车排放和工业卤代烃排放的...  相似文献   

13.
南京北郊工业乡村混合区秋季边界层VOCs垂直分布特征   总被引:1,自引:0,他引:1  
利用2020年秋季南京北郊低对流层(0~1 000 m)VOCs探空实验数据,分析了该地区VOCs垂直廓线分布及其日变化、光化学反应性等特征.结果表明,φ(VOCs)随高度升高而降低(72.1×10-9±28.1×10-9~56.4×10-9±24.8×10-9).各高度上烷烃占比最大(68%~75%),其次为芳香烃(10%~12%)、卤代烃(10%~11%)、烯烃(3%~7%)和乙炔(2%).边界层日变化对VOCs廓线影响较大,早晚较低的边界层致使VOCs在近地面累积,而在上部体积分数较低;午后VOCs的垂直分布则较均匀.上午光化学反应性强(弱)的烯烃(烷烃)等的体积分数占比随高度升高而减小(增加),说明高层的VOCs光化学老化显著.午后VOCs各组分占比及其OFP在低对流层内垂直分布则较均匀.受周边不同来源气团影响,各高度φ(VOCs)及组分占比差异明显,工业气团在200~400 m;高度间φ(VOCs)随高度升高,芳香烃占比增大;城区气团φ(VOCs)垂直负梯度最大,近地面φ(VOCs)较高,...  相似文献   

14.
南京北郊大气VOCs体积分数变化特征   总被引:4,自引:10,他引:4  
安俊琳  朱彬  李用宇 《环境科学》2013,34(12):4504-4512
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs体积分数的时间序列变化特征、光化学活性差异和来源特征进行了研究.结果表明,VOCs体积分数平均为43.52×10-9,并呈现夏季高,冬季低的季节变化.VOCs体积分数呈现夜间高,白天低的日变化特征.VOCs体积分数夜间呈现夏季>秋季>春季>冬季,白天呈现冬季>夏季>春季>秋季.VOCs日变化幅度秋季最大,冬季最小.烷烃和烯烃日变化幅度最大值出现在秋季,芳香烃和炔烃日变幅最大值出现在春季.采用丙烯等量体积分数方法表示,VOCs物种中烯烃含量最高,芳香烃次之,烷烃最小.T/B、E/B和X/B比值平均值分别是1.23、0.95和0.81,反映出影响观测点的气团呈现一定老化程度.以3-甲基戊烷作为机动车排放典型示踪物,估算得到乙烯、甲苯和间,对-二甲苯分别有85%、71%和82%来自非机动车源.  相似文献   

15.
目前,工业源有机溶剂相关的实测型研究在我国鲜见报道,为摸清我国工业源有机溶剂挥发性有机物(volatile organic compounds,VOCs)含量及物种情况,提供建立我国工业源有机溶剂使用源排放清单所需的排放因子,选取我国用量均高居全球第一的木器涂料及汽车涂料开展研究.通过到企业采样及市场购买等途径获取涂料样品,按国内涂料相关标准检测方法进行测定,获取涂料中VOCs含量及成分谱,并计算其臭氧生成潜势(ozone formation potential, OFP).结果表明,在木器涂料中,溶剂型、水性和光固化(ultra-violet, UV)涂料的平均VOCs含量(质量分数)分别为37.28%、 9.88%和18.02%.汽车涂料中,水性原厂漆、溶剂型原厂漆、水性修补漆和溶剂型修补漆的平均VOCs含量分别为15.06%、 59.90%、 11.79%和54.50%.不同种类的涂料VOCs含量差异巨大.水性涂料的主要组分及OFP贡献者为醇醚类,溶剂型涂料的为苯系物及酯类,UV涂料的为酯类和醇醚类.涂料样品的均值均可满足现行强制性国家标准,但存在12%的溶剂型木器涂料样品和42...  相似文献   

16.
2019年对沈阳市大气挥发性有机物(VOCs)开展了为期l a的观测,并对得到的53种物种进行浓度特征以及反应活性的研究.结果表明,观测期间沈阳市VOCs平均浓度为65.33 μg·m-3,烷烃、烯烃和芳香烃质量分数分别为62.44%、16.52%和19.32%.浓度排名前10的物种主要是C3~C5的烷烃、烯烃和部分芳香烃,累计占VOCs总浓度的64.13%.大气中烷烃、烯烃和芳香烃浓度均表现为双峰型的日变化特征,峰值分别出现在06:00~08:00和19:00~20:00,最低点出现在14:00~15:00;月变化上,该地ρ(VOCs)分别在12月和5月达到最高值(136.44μg.m-3)和最低值(35.61 μg·m-3);VOCs表现出明显的季节变化特征,即冬季>秋季>夏季>春季,且烷烃、烯烃和芳香烃均随季节表现出增加趋势.通过特征值甲苯/苯(T/B)研究发现,沈阳春季VOCs主要来源于交通源和采暖源,夏季主要来源机动车尾气以及溶剂挥发,秋冬季主要受生物质燃烧和煤燃烧等排放源的影响.通过对反应活性分析,燃烧源是沈阳市控制臭氧污染的关键,丙烯、乙烯和1-己烯是沈阳市大气VOCs中反应活性最高的物种.  相似文献   

17.
采用"GCMS/FID"在线分析方法,对广州市区2016年7月大气VOCs的污染特征及来源进行了研究,共检出了73种VOCs组分.结果表明,观测期间总VOCs的小时平均浓度为(118.83±79.40)μg·m-3,最高值为492.42 μg·m-3,最低值为10.54 μg·m-3.07:00左右TVOC浓度出现高峰,说明早高峰的机动车污染对该站点的VOCs具有较大贡献;14:00左右浓度最低,与光化学损耗相关;21:00~24:00间VOCs浓度又出现高值,可能和污染源排放或边界层压缩有关.运用PMF模型解析出VOCs的5个主要来源分别是:交通污染源、溶剂使用污染、加油站污染、植物排放和餐厨废气,其贡献分别为29.79%、26.61%、24.86%、9.91%、8.84%;白天交通废气源贡献最大,而中午植物排放的贡献也明显增大;夜间溶剂污染源和加油站污染源占比上升,为该时段VOCs的主要来源.  相似文献   

18.
挥发性有机化合物(VOCs)是臭氧和颗粒物等的重要前体物,对空气质量的影响尤为显著.为研究连云港市VOCs的组分特征和来源,选择4个国控点开展春、夏和秋季典型日的VOCs采样和分析,计算VOCs不同组分对臭氧生成的影响,利用正交矩阵因子分解法(PMF)解析VOCs的来源.结果表明,春季VOCs浓度为27.46×10-9~40.52×10-9,夏季为45.79×10-9~53.45×10-9,秋季为38.84×10-9~46.66×10-9;含氧化合物的浓度占比为41%~48%,在各个季节均为最高,浓度水平较高的VOCs物种是丙酮、丙烯醛和丙醛等,异戊二烯的浓度在夏季较高;一般而言VOCs浓度09:00高于13:00,其中丙烯醛、乙烯和二氯甲烷的变化较大;含氧化合物的臭氧生成潜势(OFP)最高,其次是芳香烃和烯烃类,烷烃的OFP最小,OFP较高的VOCs物种是丙烯醛、丙烯和乙烯等;影响连云港市VOCs的来源主要有工业源(49%)、溶剂使用源(23%)、交通源...  相似文献   

19.
机动车尾气排放VOCs源成分谱及其大气反应活性   总被引:5,自引:11,他引:5  
选取轻型汽油车、重型柴油车和摩托车等城市典型机动车种分别采用底盘测功机及实际道路实验,结合SUMMA罐采样的方法,获得了小轿车、出租车、公交车、卡车、摩托车和LPG助动车的尾气VOCs样品,利用气相色谱-质谱分析了各车型机动车尾气VOCs的浓度及其物种组成.结果表明,轻型汽油车尾气VOCs以甲苯、二甲苯等芳香烃为主,占43.38%~44.45%;重型柴油车以丙烷、n-十二烷及n-十一烷等烷烃组分为主,占46.86%~48.57%,还有13.28%~15.01%的丙酮等含氧特征组分;摩托车与LPG助动车的主要成分为乙炔,分别占39.75%和76.67%左右.各车型中,摩托车和轻型汽油车尾气VOCs的化学活性显著高于重型柴油车辆,以上海市为例,其大气化学活性贡献分别占55%和44%左右,是影响城市和区域大气氧化能力的关键污染源,其中以甲苯、二甲苯、丙烯、苯乙烯等关键活性物种的贡献最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号