首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
重庆市北碚城区大气中VOCs组成特征研究   总被引:7,自引:4,他引:7  
2012年3月~2013年2月,使用特制的不锈钢钢瓶采集重庆市北碚城区大气样品,并采用三步预浓缩-气相色谱/质谱法对所采集的气体样品进行检测.本研究共检出78种挥发性有机物(volatile organic compounds,VOCs),其中烷烃25种,烯烃15种,芳香烃28种,卤代烃10种.结果表明,重庆市北碚大气中年均浓度最高的前7种VOCs分别为:二氯甲烷(3.08×10-9,体积分数,下同)、苯(2.09×10-9)、异戊烷(1.85×10-9)、甲苯(1.51×10-9)、丙烷(1.51×10-9)、间/对-二甲苯(1.43×10-9)、苯乙烯(1.39×10-9).北碚大气中总挥发性有机物(total volatile organic compounds,TVOCs)浓度为33.89×10-9,季节变化表现为:春季(42.57×10-9)>秋季(33.89×10-9)>冬季(31.91×10-9)>夏季(27.04×10-9).从组成来看,烷烃和芳香烃对TVOCs贡献最大,分别达到31.5%和30.7%;其次是卤代烃类,占27.4%;含量最少的组分是烯烃,所占比例仅为10.4%.采用臭氧生成潜势对VOCs组分活性分析结果表明,烯烃类和芳香烃类化合物是对北碚大气O3生成贡献最大的物质.利用主成分分析法对大气样品中VOCs来源进行分析,发现北碚大气VOCs主要源于机动车尾气排放,贡献比为50.41%.北碚大气中T/B年均值为0.73,表明大气中的苯类物质主要来源于机动车的尾气排放,受溶剂挥发的影响较小.  相似文献   

2.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

3.
基于无人飞机和吸附管采样技术建立了一种大气边界层VOCs的采样方法,并将该方法应用于上虞化工园区(杭州湾上虞经济技术开发区)大气VOCs垂直廓线观测研究. 使用该方法采集高空VOCs样品后,基于PAMS和TO-15混合VOCs标气,利用TD-GCMS (热脱附-气相色谱质谱联用)检测富集在吸附管上的VOCs,获得了上虞化工园区大气VOCs垂直廓线. 结果表明:①该方法测定的97种VOCs体积分数在3×10?9~30×10?9范围内线性良好,检出限范围为0.14×10?9~0.96×10?9,回收率在93.6%~124.0%之间. ②上虞化工园区大气中φ(卤代烃)、φ(芳香烃)和φ(烷烃)较高,主要污染物有十二烷、十一烷、二氯甲烷、1,2,4-三氯苯和1,4-二乙苯;不同VOCs组分具有不同的垂直廓线特征,φ(芳香烃)、φ(卤代烃)、φ(烯烃)和φ(含氧化合物)随高度的上升呈先增后降的趋势,而φ(烷烃)随高度上升不断降低. ③大部分污染物体积分数峰值出现在100 m高空,这可能与大气逆温现象有关;14:00 的φ(TVOCs)(TVOCs为总挥发性有机物)高于17:00,可能是午后高温导致有机溶剂挥发量增大所致;白天φ(VOCs)在100~300 m高空范围内下降较快,说明在该范围内可能存在较强的光化学反应,夜晚φ(VOCs)可能来自区域水平输送. ④观测期间,对大气OFP (臭氧生成潜势)贡献较大的组分为芳香烃和烯烃,主要包括1,2,3-三甲苯、1,4-二乙苯、顺式-2-丁烯和1,2,4-三甲苯. 研究显示,高浓度卤代烃及OFP贡献较高的芳香烃是上虞化工园区需首要减排的VOCs组分.   相似文献   

4.
长白山地区大气VOCs 的观测研究   总被引:6,自引:1,他引:6       下载免费PDF全文
为了解我国东北内陆背景大气中挥发性有机物(VOCs)的浓度水平和变化形式,采用3 步冷冻浓缩和GC/MS 联用技术对长白山地区大气中VOCs 进行了为期1 年的采样分析.结果表明,长白山地区大气中总挥发性有机物(TVOCs)年平均浓度为(181.7±69.6)×10-9C(碳单位体积比),其中烷、烯、芳香和卤代烃4 类物质的百分含量依次为43%、22%、31%和4%.烷烃类物质中异戊烷、2-甲基戊烷、正戊烷和3-甲基戊烷等机动车尾气或汽油挥发特征性物质浓度最高;芳香烃类物质中苯/甲苯的特征比值略高于机动车尾气排放特征比值0.5;烯烃类物质以植物排放的蒎烯、异戊二烯为主.从高浓度VOCs 种类分析,长白山地区大气VOCs 受汽车污染和森林排放双重控制.TVOCs 浓度年度峰值出现在春季,为(206.0±58.9)×10-9C;谷值出现在冬季,为(152.3±53.9)×10-9C.根据等效丙烯浓度的计算,烯烃对该地区O3 生成贡献最大,而含量丰富的烷烃、芳香烃则在光化学反应中贡献较小.  相似文献   

5.
成都双流夏秋季环境空气中VOCs污染特征   总被引:1,自引:4,他引:1  
邓媛元  李晶  李亚琦  吴蓉蓉  谢绍东 《环境科学》2018,39(12):5323-5333
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开.结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45. 15±43. 74)×10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%)、卤代烃(17%)、含氧挥发性有机物(OVOCs,15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对-二甲苯、丙烷、1,2-二氯乙烷以及丁酮.通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对-二甲苯、异戊二烯、乙烯等.整个观测期间,有两次明显的生物质燃烧活动.国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57. 65×10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著.分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点.双流区环境空气中VOCs受本地工业源排放影响较大.  相似文献   

6.
北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究   总被引:11,自引:20,他引:11  
挥发性有机物(VOCs)是大气中光化学污染臭氧(O3)的重要前体物,其在大气中的浓度水平往往直接影响着臭氧的污染水平.以2008年夏季北京大气中VOCs浓度观测资料为基础,分析了VOCs浓度和组分随时间的变化特征,比较了各组分对臭氧产生的影响潜势,并利用主成分分析法研究了VOCs主要来源.结果表明,北京大气总VOCs在上午和下午的浓度分别是34.38×10-9(体积分数)和27.13×10-9(体积分数),组分中以烷烃最高,芳烃次之,烯烃最低,下午大气中VOCs浓度显著低于上午,烯烃、芳烃和烷烃依次下降28%、26%和15%;其中1,2,4-三甲苯等效丙烯浓度最高(8.05×10-9C),其次为间对二甲苯(6.97×10-9C)、甲苯(6.41×10-9C)和1,3,5-三甲苯(5.64×10-9C);芳烃对大气O3生成贡献最大(47%),其次是烯烃(40%),烷烃最低(13%).北京大气中VOCs主要来源于机动车(28%)、溶剂挥发(19%)、液化气泄漏(15%)和工业排放(12%).为遏制近年来夏季O污染加重趋势,北京应大力减少VOCs排放,特别是芳香烃的排放量.  相似文献   

7.
利用在线GC-MS/FID,对重庆主城区2015年夏、秋季大气挥发性有机物(VOCs)开展了为期1个月的观测.结果发现,监测期间主城区总挥发性有机物(TVOCs)体积分数为41.35×10-9,烷烃占比最大,其次是烯炔烃、芳香烃和含氧性挥发性有机物(OVOCs),卤代烃占比最小.将本次研究结果同以往研究结果比较发现,高乙炔浓度可能受交通源排放的影响,而乙烯和乙烷浓度的大幅度降低则得益于主城区化工企业的大举搬迁.通过最大增量反应活性(MIR)估算VOCs的臭氧生成潜势(OFP)发现,芳香烃(32.1%)和烯烃(30.6%)对臭氧生成的贡献最为显著,其中以乙烯、乙醛和间/对二甲苯的OFP最强,因此,对烯烃和芳香烃的削减能有效控制大气中O3的生成.通过PMF模型共解析出5个因子,主要为生物源及二次生成、其他交通源、天然气交通源、溶剂源和工业源.从5个因子对VOCs的贡献百分比可以看出,重庆城区交通源贡献最大(50.4%),其次是工业源和溶剂源的贡献(30%),生物源及二次生成的贡献最小.  相似文献   

8.
厦门冬春季大气VOCs的污染特征及臭氧生成潜势   总被引:6,自引:4,他引:6  
2014年1~4月在厦门市城区和郊区开展冬春季节大气样品的采集,采用大气预浓缩系统与GC/MS联用技术定量了48种大气挥发性有机物(VOCs),对比分析了冬春季城区和郊区大气VOCs的污染特征,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,冬季厦门城区和郊区大气中VOCs的平均体积分数分别为11.13×10-9和7.17×10-9,春季厦门城区和郊区大气中VOCs的平均体积分数分别为24.88×10-9和11.27×10-9,且均表现为烷烃芳香烃烯烃.通过B/T值探讨城区和郊区VOCs的来源发现,机动车和溶剂挥发是城区VOCs的主要来源,郊区VOCs除了局地源的贡献外,还受到外来污染物扩散传输的影响.城、郊区的主要VOCs包括丙烯、正丁烷、异丁烷、正戊烷、异戊烷、正己烷、苯、甲苯、乙苯和间对二甲苯,这10种组分对两地VOCs的贡献表现为春季(城区和郊区分别为62.83%和53.74%)高于冬季(城区和郊区分别为61.57%和45.83%).城、郊区VOCs的臭氧生成潜势分析显示,芳香烃的相对贡献率最大,其次是烯烃,烷烃最小.C3、C4类烯烃和苯系物是厦门城区和郊区活性较高的物种,对臭氧的贡献较大.比较观测期间城区和郊区VOCs的平均MIR值可知,郊区VOCs的活性高于城区.  相似文献   

9.
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开。结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45.15±43.74)?10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%),卤代烃(17%),含氧挥发性有机物(OVOCs)(15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对二甲苯、丙烷、1,2-二氯乙烷以及丁酮。通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对二甲苯、异戊二烯、乙烯等。整个观测期间,有两次明显的生物质燃烧活动。国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57.65?10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著。分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点。双流区环境空气中VOCs受本地工业源排放影响较大。  相似文献   

10.
为摸清郑州市冬春季大气挥发性有机物(VOCs)污染特征及来源,对VOCs的浓度变化、SOAP(二次有机气溶胶生成潜势)及来源进行探究。结果表明,郑州冬春季VOCs平均浓度为45.05×10~(-9),其中烷烃20.62×10~(-9),含氧有机物(OVOCs)5.50×10~(-9),炔烃5.27×10~(-9),卤代烃5.15×10~(-9),烯烃5.05×10~(-9),芳香烃3.46×10~(-9);浓度排名前5物种为乙烷8.72×10~(-9)、乙炔5.27×10~(-9)、丙烷4.57×10~(-9)、乙烯3.77×10~(-9)、丙酮3.52×10~(-9)。观测期间上午09时VOCs浓度高于下午14时,VOCs与PM2.5呈明显正相关,冬春季高湿、高温、静稳等天气条件易引起本地VOCs和PM2.5累积和转化。郑州市SOAP为0.74μg/m~3,芳香烃占97.92%,对SOAP贡献较大的前5物种为甲苯、乙苯、间/对二甲苯、苯和邻二甲苯。运用正交矩阵因子(PMF)模型解析出郑州市冬春季VOCs来源为燃煤+生物质燃烧占27.1%、工业溶剂占12.6%、溶剂涂料使用占6.3%、机动车尾气排放占38.2%、燃料挥发占15.8%。建议后期郑州市冬春季重点关注机动车、燃煤及生物质燃烧源排放。  相似文献   

11.
李嫣  王浙明  宋爽  徐志荣  许明珠  徐威力 《环境科学》2014,35(10):3663-3668
以浙江台州6家典型化学合成类制药企业为代表,对其排放工艺废气中的18项挥发性有机物(VOCs)特征污染物(如甲苯、甲醛、二氯甲烷等)进行监测和分析,并采用臭氧产生潜力(OFP)和健康风险评价指标对VOCs所产生的环境与健康危害进行初步的评价.结果表明,化学合成类制药企业排放的总VOCs浓度为14.9~308.6 mg·m-3,其产生环境危害的OFP值为3.1~315.1 mg·m-3,主要贡献物质为甲苯、四氢呋喃、乙酸乙酯等6种物质,存在较大的潜在环境危害.另外,健康危害中的非致癌风险指数和总致癌风险指数介于9.48×10-7~4.98×10-4a-1和3.17×10-5~6.33×10-3之间,主要是苯、甲醛和二氯甲烷这3种致癌物.  相似文献   

12.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   

13.
为探讨东莞典型工业区夏季大气挥发性有机物(VOCs)污染特征及来源,于2020年夏季在厚街镇对大气环境中56种VOCs开展了在线观测,并同步收集了臭氧(O3)、氮氧化物(NOx)和一氧化碳(CO)等气体污染物浓度和气象因子等资料,在此基础上分析了VOCs总体积分数和主要物种体积分数特征,进一步估算了主要VOCs物种对臭氧生成潜势的贡献和不同臭氧浓度下VOCs的主要污染源贡献率.结果表明,观测期间56种VOCs的体积分数平均值为53.1×10-9,其中φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别为24.7×10-9、23.7×10-9、3.9×10-9和0.7×10-9.与非臭氧污染期间相比,臭氧污染期间φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别上升约10%、43%、38%和98%.无论是臭氧污染还是非臭氧污染期间,芳香烃对臭氧生成潜势的贡献率均最大,其次为烷烃、烯烃和炔烃.整个夏季观测期间,溶剂源、液化石油气泄漏、化石燃料燃烧源和油气挥发源对VOCs的贡献率分别为60%±20%、16%±11%、15%±11%和9%±6%;臭氧污染期间,溶剂源的贡献率下降到44%,而液化石油气泄漏和油气挥发源的贡献率分别上升到21%和16%.  相似文献   

14.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10-9,C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10-9]>风景区[(21. 7±4. 4)×10-9]>交通居民混合区[(20. 8±7. 2)×10-9].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10-9),夏季风景区VOCs浓度最高(21. 5×10-9).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著...  相似文献   

15.
长白山背景站大气VOCs浓度变化特征及来源分析   总被引:2,自引:2,他引:0  
吴方堃  孙杰  余晔  唐贵谦  王跃思 《环境科学》2016,37(9):3308-3314
挥发性有机物(VOCs)是臭氧和二次有机气溶胶的重要前体物.为研究中国东北背景地区大气中VOCs浓度和变化特征,应用苏码罐采样技术、三步冷冻浓缩和GC/MS联用技术测定了长白山大气本底站中的VOCs组成、浓度及季节变化,并利用PCA(principal component analysis)受体模型初步解析了白山大气中VOCs来源.结果表明,长白山地区TVOCs年平均浓度(体积分数)为10.7×10~(-9)±6.2×10~(-9),其中卤代烃所占比例最高,占VOCs总浓度的37%,其次是烷烃33%、芳香烃15%、烯烃15%.长白山地区TVOCs呈现明显的季节变化,变化特征为春季﹥秋季﹥夏季﹥冬季,春季大气中的TVOCs浓度显著(P﹤0.05)高于其他季节.利用主成分分析VOCs物种,提取出5个因子,分别归纳为交通源、液化石油气(LPG)、生物源、燃烧源和区域工业输送.结合HYSPLIT-4.0后向轨迹模型,分析周边区域传输对VOCs物种浓度的影响,发现来自西南向气团传输是长白山VOCs物种浓度增加的主要原因.  相似文献   

16.
西南典型区域夏季大气含氧挥发性有机化合物来源解析   总被引:3,自引:1,他引:3  
含氧挥发性有机物(OVOCs)是大气光化学过程中的重要中间产物,是臭氧的重要来源之一.利用质子转移反应飞行时间质谱仪(PTR-TOF-MS)在成都平原对OVOCs进行观测,探讨其日变化特征、光化学反应活性、臭氧生成潜势和来源.结果表明,10个VOCs[乙醛、丙酮、异戊二烯、甲基乙基酮(methyl ethyl ketone,MEK)、甲基乙烯基甲酮(methyl vinyl ketone,MVK)、甲基丙烯醛(methacrolein,MACR)、苯、甲苯、苯乙烯、C8芳香烃和C9芳香烃]总浓度(体积分数)为(10.97±4.69)×10-9,OVOCs为(8.54±3.44)×10-9,芳香烃为(1.53±0.93)×10-9,生物源VOCs为(0.90±0.32)×10-9;光化学活性和臭氧生成潜势均排名前三的物种为:异戊二烯、乙醛和C8芳香烃;3个OVOCs物种(乙醛、丙酮和MEK)主要来源于本地生物源和人为二次源,且丙酮有较强的区域背景值,说明该地区的污染受到较为显著的区域传输的影响.本研究可加深对西南地区臭氧的区域形成机制的认识,为科学管控臭氧污染提供依据.  相似文献   

17.
2020年8月底至9月初,重庆市主城区发生了持续时间近2周的O3污染过程.期间,在主城区3个观测站点利用苏玛罐和DNPH采样柱采集的环境空气VOCs样品,研究了O3污染期间VOCs组分特征、光化学反应活性及来源解析.结果表明,观测期间重庆市主城区TVOCs平均体积分数为45.08×10-9,各组分体积分数排序依次为OVOCs、烷烃、卤代烃、烯烃、芳香烃和炔烃.体积分数较高的VOCs物种是甲醛、乙烯和丙酮,三者之和占比TVOCs超过30%.OVOCs和烯烃对· OH消耗速率(Li·OH)和臭氧生成潜势(OFP)均具有较大的贡献,是生成O3的关键VOCs组分;其中,OVOCs组分中主要的活性物种为甲醛、乙醛和丙烯醛,烯烃组分中主要的活性物种为异戊二烯、乙烯和正丁烯.VOCs中二甲苯与乙苯的比值较低,并且两者呈现显著的相关性,表明主城区大气中VOCs气团老化程度高,同时还受到其他区域远距离传输的影响.PMF受体模型解析结果显示,主要有5种VOCs来源,依次为二次生成源(27.67%)、机动车尾气源(26.56%)、工业排放源(17.86%)、植物源(14.51%)和化石燃料燃烧源(13.4%).  相似文献   

18.
宿迁市VOCs污染特征和来源解析   总被引:2,自引:0,他引:2  
利用2019年8-9月宿迁市4个站点的采样资料,分析了宿迁大气中挥发性有机物(VOCs)的化学组成及其时空分布特征;估算了VOCs的臭氧生成潜势(OFP);并结合PMF受体模型,开展了VOCs来源解析.结果表明,观测期间宿迁市总挥发性有机物(TVOCs)体积分数为8.6×10-9~79.4×10-9,平均体积分数为26.9×10-9,浓度水平较低.VOCs质量浓度表现为乡镇工业区(宿迁技师学院:(29.8±18.4)×10-9) > 城郊工业区(生态化工园:(28.4±20.6)×10-9) > 城市住宅区(宿迁中学:(22.6±11.5)×10-9) > 城市商业区(市供电局:(22.3±15.1)×10-9).各采样点4种组分(烷烃、烯烃、乙炔及芳香烃)日均浓度变化较为一致,且均表现出较为明显的周末效应.宿迁市典型污染物为C2~C5烷烃、乙炔、乙烯、甲苯,间/对-二甲苯,不同采样点的关键组分基本相同,表明VOCs的来源比较稳定.OFP计算表明芳香烃和烯烃是臭氧最大贡献源.特征量比值分析发现,观测期间宿迁市VOCs有明显老化现象.源解析表明交通排放、溶剂涂料和工业过程是宿迁市VOCs的主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号