首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
为探究典型工业城市大气PM2.5载带重金属的季节分布、来源及健康风险,于2019~2020年分季节采集PM2.5有效样品112个,利用电感耦合等离子体发射光谱法(ICP-AES)测定了19种元素含量.结果表明,PM2.5及其载带重金属元素的年均浓度分别为(66.25±35.73)μg·m-3和(1.32±0.84)μg·m-3.PM2.5及其元素组分夏季浓度最低,Al、Ca、Fe、Mg和Ti等元素春季浓度最高,其它元素则是冬季浓度最高.利用PMF-PSCF模型共解析出5类排放源,分别为Ni和Co相关排放源(5.8%)、机动车源(13.7%)、Cd相关排放源(5.1%)、燃烧源(18.2%)和扬尘源(57.3%).风险评价结果表明,每一类排放源的危害指数(HI)值均小于1,不存在明显的非致癌风险;致癌风险均处于10-6~10-4范围内,具有一定的致癌风险.与其它排放源相比,燃烧源的致癌风险(8.74×10-6,36.9%)和非致癌风险(0.60,25.6%)最大,建议优先对燃烧源进行治理以降低区域人群暴露风险.  相似文献   

2.
为了解保定市大气环境中PM2.5中重金属的污染特征及其健康风险,在保定市设立观测站点,利用中流量颗粒物采样器对保定市大气PM2.5进行了连续昼夜采集,并使用微波消解-电感耦合等离子质谱法分析了样品中的V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd和Pb等10种重金属元素的质量浓度.结果表明,保定市大气PM2.5浓度范围为16.84~476.19 μg·m-3,采样期间有65d高于我国《环境空气质量标准》(GB 3095-2012)中的二级标准,超标率为54.2%.保定市PM2.5中重金属元素的浓度变化趋势为:除Ni、Mn和Co外,夜间浓度略大于日间;大部分重金属元素秋冬季浓度大于春夏季.富集因子分析可知,保定市Cu、Zn、Pb、Cd主要来自于人为源,特别是受到交通源的影响较大.健康风险评估结果表明,保定市大气PM2.5中的重金属污染的非致癌风险较小,致癌风险主要是As、Cr、Cd和Co,且成年人的致癌风险大于儿童.  相似文献   

3.
于2018年12月18日至2019年1月22日在天津和青岛进行PM2.5样品采集,利用电感耦合等离子体质谱仪(ICP-MS)测定PM2.5中18种元素(Na、Mg、Al、K、Ca、V、Cr、Mn、Fe、Ni、Cu、Zn、As、Se、Mo、Cd、Ba和Pb)浓度,运用富集因子法讨论了元素的富集程度,并评估了重金属的生态风险和健康风险.结果表明,采样期间天津和青岛ρ(PM2.5)平均值分别为(93.6±53.5)μg·m-3和(85.5±60.3)μg·m-3;Zn是PM2.5中最主要的微量元素;富集因子结果表明,Se、Cd、Zn、Pb、Mo、Cu和As元素富集程度高,污染严重,主要受人为活动的影响.在天津重金属的潜在生态风险大小依次为:Cd>Mo>Se>Pb>As>Cu>Zn>Ni>Cr>V,在青岛重金属的潜在生态风险大小依次为:Cd>Se>Mo>As>Pb>Zn>Cu>Ni>Cr>V,Cd元素的贡献最大,对天津和青岛生态风险的贡献率分别为67%和86%,属于极高的风险等级.健康风险评价显示,手口摄入是引起非致癌风险和致癌风险的主要暴露途径,且儿童非致癌风险和致癌风险均高于成人,天津和青岛的重金属对儿童的综合非致癌风险(HI)值分别为5.38和5.40,对成人的HI值分别为1.04和1.02,均高于1,说明成人和儿童均存在明显的非致癌风险,且以As和Pb的非致癌风险最大.重金属致癌风险(CR)值大小依次为:As>Cr>Pb,其中As在天津和青岛的儿童中存在致癌风险,Cr和Pb存在潜在致癌风险.  相似文献   

4.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

5.
于山东省菏泽市采集了2017年10月15日至2018年1月31日期间菏泽学院、华润制药和污水处理厂共3个采样点的大气PM2.5样品,利用电感耦合等离子体质谱仪(ICP-MS)测定PM2.5中21种金属元素的浓度,并讨论元素富集程度、评估重金属的健康风险和潜在生态风险.结果表明,采样期间3个采样点中ρ(PM2.5)范围为26.7~284.1 μg·m-3且浓度值差别不大,均处于较高污染水平;3个采样点金属元素中K浓度最高,分别占总量的31.03%、39.47%和38.43%,主要由于菏泽作为较大农业城市,其秋冬季生物质燃烧贡献率较高;3个采样点微量元素中ρ(Zn)最高,分别为89.70、84.21和67.68 ng·m-3.富集因子结果表明,Zn、Pb、Sn、Sb、Cd和Se的富集因子值均高于100,其中Cd和Se的富集因子分别高于2 000和4 000,受人为活动影响显著,可能与工业生产、金属冶炼、道路源和燃煤排放等有关.健康风险结果表明,As存在一定的潜在非致癌风险(儿童和成人HQ>0.1),3个采样点对儿童和成人均存在综合潜在非致癌风险(HI>0.1)和一定的潜在致癌风险(CRT>1×10-6),其中污水处理厂对成人的致癌风险较为显著(CRT>1×10-4),成人的致癌风险略高于儿童可能与成人室外活动时间较长和PM2.5暴露量更高有关.潜在生态风险值最高的元素为Cd、As和Pb,其中Cd表现为极高的潜在生态风险,应引起重视;3个采样点均呈现出极高的综合潜在生态风险,强度在空间上表现为:菏泽学院>华润制药>污水处理厂.  相似文献   

6.
上海市PM2.5重金属污染水平与健康风险评价   总被引:15,自引:4,他引:11  
为了解上海市大气环境中PM2.5及其重金属的污染特征和健康风险,于2012年5~10月对上海市普陀区(PT)、闵行区(MH)和崇明岛(CM)大气颗粒物PM2.5及其重金属(Cd、Cr、Cu、Pb、Zn)含量进行了监测.结果显示,PM2.5质量浓度介于13.66~143.52 μg·m-3之间,其中,普陀和闵行大气中PM2.5的含量高于崇明岛,且于5月、9月和10月超出国家空气质量二级标准(24 h均值75 μg·m-3).3个监测点PM2.5中重金属含量的时间分布规律与PM2.5一致;崇明岛PM2.5中Cd、Cu、Pb、Zn的含量整体上低于普陀和闵行,而Cr的含量则较高.5种重金属元素对成年男性的健康风险最大,其次是成年女性,对儿童青少年的健康风险则最小;其中,Cd和Cr的风险指数要高于Cu、Pb、Zn的风险指数.  相似文献   

7.
碳质气溶胶是细颗粒物(PM2.5)的重要组成部分,可影响全球气候变化、大气能见度、区域空气质量和人类健康. 为了探究减排背景下碳质气溶胶的长期变化特征,通过实时在线监测获取了2018~2021年成都市PM2.5样品中的有机碳(OC)、元素碳(EC)、挥发性有机物(VOCs)浓度以及相应的气象数据. 结果表明,监测期间ρ(OC)和ρ(EC)均值分别为(10.9 ±5.7)μg·m-3和(2.6 ±1.9)μg·m-3,在PM2.5中占比分别为25.2%和6.0%,ρ(SOC)均值为(5.7 ±3.3)μg·m-3,在OC中的占比为52.9%. OC和EC浓度随PM2.5年际变化趋势一致,2018~2020年呈下降趋势[PM2.5:年均下降浓度为-7.1 μg·(m3·a)-1,年均降幅为-14.6 %·a-1;OC:年均下降浓度为-1.7 μg·(m3·a)-1,年均降幅为-14.2 %·a-1;EC:年均下降浓度为-0.1 μg·(m3·a)-1,年均降幅为-4.4 %·a-1],2021年各污染物浓度较2020年均有不同幅度反弹. PM2.5和OC浓度大小为:冬>春>秋>夏,EC浓度大小为:冬>秋>春>夏,OC和EC占比分别呈夏季和秋季高于其他季节,对应季节OC和EC占比分别为26.8%和6.9%. 随着污染程度的加重,OC、EC和SOC浓度逐步上升,但在PM2.5中的占比却呈下降趋势,说明成都市PM2.5污染的控制因子并不是碳组分. 源解析结果表明,成都市碳质气溶胶主要受机动车、工业源、生物质燃烧源、VOCs二次转化影响. 2019~2021年,EC受VOCs中机动车特征组分影响逐年下降,春季和秋季OC和EC受VOCs影响大于其他季节,春秋季节应加大VOCs排放治理,减少二次转化影响.  相似文献   

8.
为探究北京地区大气PM2.5载带金属在城区和郊区污染特征、来源及其健康风险的差异,于2017年6~11月采集海淀和大兴两地的PM2.5日样本,分析PM2.5及其载带的13种金属浓度.利用PMF源解析方法对13种金属元素来源进行分析,并采用健康风险评价方法对其中9种金属的健康危害进行评估.结果表明,城区PM2.5及Cr、Co、Mn和Ni等10种金属浓度与郊区均有显著差异(P<0.05).源解析结果发现,城区和郊区均可解释为4个源,但来源略有不同,占比亦有差异.城区的为机动车源(51.2%)、燃煤来源(19.1%)、扬尘来源(19.3%)和燃油来源(10.4%);郊区的为机动车源(47.9%)、燃煤来源(22.6%)、扬尘来源(20.2%)和电镀来源(9.3%).健康风险评价结果表明,城郊各金属HQ值均小于1,均不存在非致癌风险.城区中Ni和Pb,郊区中Cd、Co、Ni和Pb可忽略致癌风险,而城区的As(2.77×10-5)、Cd(2×10-6)、Co(1.76×10-6)和Cr(Ⅵ)(7.88×10-6),郊区的As(8.34×10-6)和Cr(Ⅵ)(4.94×10-6)的R值介于10-6与10-4之间,具有一定的致癌风险.  相似文献   

9.
本研究采用气溶胶化学组分在线监测仪(ACSM)对北京地区2016年10月15日~11月15日期间非难熔性PM1(NR-PM1)化学组分进行实时连续在线观测,探讨了NR-PM1化学组分的演变特征;运用潜在源贡献分析(PSCF)法和气象-空气质量模式(WRF-CAMx)识别了北京PM2.5潜在污染源区和传输路径,揭示了PM2.5净传输通量的垂直分布特征.结果表明,北京秋季NR-PM1和PM2.5质量浓度分别为(59.16±57.05)μg·m-3和(89.82±66.66)μg·m-3,其中NR-PM1平均占PM2.5的(70.31±22.28)%.整个观测期间,有机物(Org)、硝酸盐(NO3-)、硫酸盐(SO42-)、铵盐(NH4+)和氯化物(Chl)分别占NR-PM1总质量浓度的(42.75±11.35)%、(21.27±7.72)%、(19.11±7.08)%、(12.19±2.64)%和(4.68±3.24)%,不同化学组分的日变化特征存在明显差异.对北京秋季NR-PM1污染影响较大的潜在源区主要集中在河北南部、河南东北部及山东西部,重污染期间保定、北京南部及廊坊等城市对NR-PM1贡献较大.WRF-CAMx模拟结果表明,PM2.5总的净传输通量呈现出显著的垂直分布特征.整个观测期间,毗邻城市主要向北京输入PM2.5,净通量最大出现在海拔600~1000 m;而重污染前期外来源输送PM2.5主要位于高空,直到污染最严重的11月5日,PM2.5转为近地面传输,说明高空和近地面传输是影响北京秋季PM2.5重污染形成的重要因素.同时鉴别出了两种传输路径,即西南-东北方向(保定→北京→承德)和西北-东南方向(张家口→北京→廊坊北→天津).  相似文献   

10.
贺博文  聂赛赛  王帅  冯亚平  姚波  崔建升 《环境科学》2021,42(11):5152-5161
为研究承德市PM2.5中碳质组分的季节变化及污染来源,于2019年1、4、7和10月采集大气PM2.5样品,测定碳质组分浓度.通过有机碳(OC)与元素碳(EC)比值、总碳质气溶胶(TCA)及二次有机碳(SOC)的估算,分析碳质组分的变化特征;结合后向轨迹和主成分分析(PCA)方法,分析污染来源.结果表明,采样期间PM2.5、OC和EC的平均质量浓度分别为(31.26±21.39)、(13.27±8.68)和(2.80±1.95)μg ·m-3.PM2.5的季节变化趋势为:冬季[(47.68±30.37)μg ·m-3]>秋季[(28.72±17.12)μg ·m-3]>春季[(26.59±15.32)μg ·m-3]>夏季[(23.17±8.38)μg ·m-3],与总碳(TC)、OC和EC季节变化趋势一致,冬季(R2=0.85)的OC与EC来源较一致;OC/EC值得出4个季节均受到交通和燃煤源排放的影响,且冬季受烟煤排放影响显著.TCA的平均浓度为(21.38±13.68)μg ·m-3,占PM2.5比例达68.39%,二次转化率(SOC/OC)为:春季(54.09%)>秋季(37.64%)>夏季(32.91%)>冬季(25.43%).后向轨迹模拟结果表明,春季和夏季气团携带的污染物浓度相对较低,秋季污染物的传输通道为西南方向,冬季为西北方向,主成分分析(PCA)表明,承德市PM2.5削减的关键是控制机动车尾气、燃煤和生物质燃烧源的排放.  相似文献   

11.
2011~2012北京大气PM2.5中重金属的污染特征与来源分析   总被引:14,自引:12,他引:2  
为研究北京PM_(2.5)中重金属污染特征,于2011年夏季~2012年夏季每3 d采集一次PM_(2.5)样品.利用电感耦合等离子体质谱(ICP-MS)分析了Li、V、Cr、Mn、Co、Cu、Zn、As、Se、Ti、Ga、Ni、Sr、Cd、In、Ba、Tl、Pb、Bi和U的浓度,选取其中Zn、Pb、Mn、Cu、As、V和Cr 7种主要重金属元素进行深入讨论.北京市PM_(2.5)中重金属Zn、Pb、Mn、Cu、As、V和Cr的平均质量浓度分别为(331.30±254.52)、(212.64±182.06)、(85.96±47.00)、(45.19±27.74)、(17.13±19.02)、(4.92±3.38)和(9.04±7.84)ng·m-3.采样期间秋冬季节PM_(2.5)中重金属污染较春夏季节严重,这可能与北京秋冬季节取暖导致煤燃烧增加有关.霾过程会加剧北京PM_(2.5)中主要重金属Zn、Pb、Mn、Cu、As、V和Cr的污染,霾天对重金属污染的增加作用呈现一定的季节变化特征.源分析结果表明北京大气颗粒物中重金属主要来源于扬尘(包括建筑扬尘和道路扬尘)和煤燃烧,少量来自远距离输送和其他工业来源.  相似文献   

12.
中国民用煤燃烧排放细颗粒物中重金属的清单   总被引:5,自引:2,他引:3  
刘海彪  孔少飞  王伟  严沁 《环境科学》2016,37(8):2823-2835
基于稀释通道采样系统和室内模拟燃烧实测,并搜集全国各省区煤中11种重金属的含量,推算出两种常用民用煤(蜂窝煤和块煤)燃烧排放的细颗粒物(PM_(2.5))中V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Sb和Pb等11种重金属排放因子.计算了2012年全国(除港、澳、台地区)民用燃煤排放PM_(2.5)中重金属的排放量,并建立了全国30 km×30 km的网格化清单.结果表明,蜂窝煤燃烧排放PM2.5中,Pb、Zn、As和Cu的排放因子较高,分别为27.1、16.8、0.99和0.97 mg·kg-1,分别是块煤的56、6、10和2倍.2012年我国民用燃煤燃烧排放PM_(2.5)中V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Sb和Pb的排放总量分别为0.5、30.1、59.5、1.1、29.3、20.0、188.9、64.9、1.6、3.4和176.7 t.湖南、河北、内蒙古、河南和山东等省区民用煤燃烧排放的各种重金属总排放量较高,分别占全国排放总量的12.4%、12.3%、10.4%、9.9%和9.3%.不同重金属的单位面积排放强度与人均排放量显示,北京、河南、山东、湖南、江西、贵州以及内蒙古等地区存在较高的重金属健康风险.空间分布信息显示,Zn和Pb年排放量较大的地区分布较广,主要分布在内蒙古、河北、北京、天津、山东、河南、甘肃、湖南以及江西等省(市)区.本研究所得细粒子中重金属清单可为区域空气质量模拟、人体健康风险评估等提供基础数据.  相似文献   

13.
为研究石家庄市冬季道路积尘PM2.5中金属元素污染特征及来源,利用移动式采样法收集石家庄市不同类型铺装道路积尘,使用ICP-MS和ICP-OES分析测定PM2.5中Cr、Zn、Mn、Cu、Pb、Ni、Sn、As、Sb、Co、Mo、Cd、Al、Mg、Ca、Fe共16种元素的质量分数.结果表明:石家庄市冬季道路积尘PM2.5中金属元素质量分数之和依次为支路>快速路>主干道>次干道,与车流量、车辆类型、道路类型等影响因素有关,w(Mg)、w(Ca)、w(Cr)、w(Cu)、w(Ni)、w(Zn)、w(Pb)、w(Sn)、w(Sb)、w(Mo)、w(Cd)的平均值均高于当地土壤背景值,是背景值的1.2~40.5倍,其中Cr、Zn、Cu、Pb、Sn、Sb、Mo、Cd等元素中,除Pb的富集因子(9.38)接近10外,其他均高于10,来源于人为污染.Igeo(地累积指数)评价结果显示,Cr、Sn(Igeo为4~5)达到强-极强污染水平;Cd、Cu(Igeo为3~4)达到强污染水平;Sb、Mo、Zn(Igeo为2~3)为中-强污染水平,Pb(Igeo为1~2)为中污染水平.多元统计分析结果表明,石家庄市冬季道路积尘中金属元素来源可分为四大类:As、Mo、Zn、Cd、Ni、Pb主要来自机动车和大气中的燃煤沉降;Mn、Co、Sb来自于自然来源、机动车尾气的排放和焊接材料及轴承的磨损;Cr、Cu、Sn主要来自于工业排放的沉降和机动车刹车片磨损;Al、Ca、Mg、Fe主要来自绿化带或机动车携带的土壤尘.研究显示,石家庄市冬季道路积尘PM2.5中金属元素污染严重,主要来源于交通排放.   相似文献   

14.
用ICP-MS对厦门市夏冬两季城区和郊区PM_(2.5)(当量直径≤2.5 μm的颗粒物)及其中10种重金属(V、Cr、Mn、Co、Ni、Zn、As、Cd、Pb和Cu)含量进行测定,分析其污染特征,并对重金属的健康风险进行评价。结果表明,采样期间厦门市PM_(2.5)中重金属含量水平表现为ZnPbCuMnVAsNiCrCdCo,其中Zn、Pb、As、Cd和Cu富集因子远远大于10,受人为影响较严重。健康风险评价结果表明,PM_(2.5)中重金属的非致癌健康风险可以忽略;几乎所有重金属的致癌健康风险都高于最大可接受风险值10~(-6)。  相似文献   

15.
Size distributions of 29 elements in aerosols collected at urban, rural and curbside sites in Beijing were studied. High levels of Mn, Ni, As, Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing. Principal component analysis (PCA) indicates 4 sources of combustion emission, crust related sources, traffic related sources and volatile species from coal combustion. The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs). Group 1 elements are crust related and mainly found within coarse mode including Al, Mg, Ca, Sc, Ti, Fe, Sr, Zr and Ba; Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S, As, Se, Ag, Cd, Tl and Pb; Group 3 elements are multi-source related and show multi-mode distribution including Be, Na, K, Cr, Mn, Co, Ni, Cu, Zn, Ga, Mo, Sn and Sb. The EFs of Be, S, Cr, Co, Ni, Cu, Ga, Se, Mo, Ag, Cd, Sb, Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter. The abundance of Cu and Sb in coarse mode is about 2-6 times higher at curbside site than at urban site indicating their traffic sources. Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline, as the EFs of Pb are comparable at both urban and curbside sites, and about two times higher in winter than that in summer.  相似文献   

16.
典型材料屋面积尘重金属形态分布与风险评估   总被引:3,自引:0,他引:3  
李敦柱  管运涛  刘安  李思远 《环境科学》2015,36(9):3269-3277
以华南地区4种典型材料屋面(瓷砖、混凝土、金属和沥青)为研究对象,采用改进式BCR连续提取法对其屋面积尘中10种重金属(Ba、Co、Cr、Cu、Mn、Ni、Pb、Sb、Sr和Zn)进行形态分析与风险评估.结果表明,屋面积尘重金属平均含量明显高于道路积尘.形态分析表明,Zn的酸溶态比例明显高于其他重金属,Pb和Cu主要以可氧化态存在,其余重金属均以残渣态为主;屋面积尘重金属可移动态比例表现为PbZnCuMnCoSrSbNiBaCr,其中Pb、Zn、Cu、Mn和Co可移动态比例均超过50%.环境风险评估发现,污染指数(Cf)与风险评价编码指数(RAC)最大值均为Zn,其生态风险较高.健康风险评估表明,屋面积尘重金属对成人与儿童非致癌风险均表现为:PbCrSbZnMnCuBaNiCoSr,其对成人非致癌风险均小于安全限值,不构成威胁,但Pb对儿童的非致癌风险高于安全限值,形成威胁;屋面积尘中Cr、Co和Ni低于致癌风险阈值,对人体无致癌风险.  相似文献   

17.
采集了珠三角地区2014—2015年冬、夏两季的环境空气PM_(2.5)样品,利用电感耦合等离体质谱仪(ICP-MS)测定了样品中的重金属含量,并采用US EPA环境健康风险评价模型,对其健康风险进行了评估.结果表明:环境空气中重金属元素Pb、Cu、Zn、Cd、As、Ni、Cr的浓度分别为11.1~183.0、48.5~406.0、110~1218、0.2~14.4、3.5~77.0、0.38~18.90、2.89~93.20 ng·m-3,浓度大小顺序为:ZnCuPbAsCrNiCd;除As外,其余重金属浓度均表现为冬季高于夏季.元素As经皮肤黏滞及口腔摄入的非致癌风险值均在安全范围内,但经呼吸途径暴露存在非致癌风险;Cu、Zn、Cd、Cr经3种途径暴露不存在非致癌风险;元素Pb、As、Cd、Cr经皮肤黏滞及口腔摄入的致癌风险均值尚在安全值范围内,但经呼吸暴露存在致癌风险;元素Ni经3种途径暴露不存在致癌风险.对于综合危害指数(HI),除As外,其他金属元素的HI值均低于安全值,各金属元素的HI值大小顺序为:AsCdNiCr.研究表明,在珠三角区域环境空气PM_(2.5)中,元素As、Cr存在一定的健康风险.  相似文献   

18.
北京城区PM2.5中致癌重金属季节变化特征及其来源分析   总被引:6,自引:7,他引:6  
于2009年4、7、10月和2010年1月在北京城区采集了PM2.5样品,采用电感耦合等离子体质谱仪分析得到29种金属元素,对7种致癌重金属浓度、富集程度及其可能的来源进行了分析.结果表明,7种致癌重金属As、Cd、Co、Cr、Ni、Pb和Se年均值浓度分别为(11.6±14.0)、(2.6±2.4)、(1.0±0.7)、(11.3±9.4)、(4.0±2.4)、(142.5±98.9)、(3.3±2.2)ng·m-3,其中仅As年均值浓度超过WHO参考限值的0.8倍.7种致癌重金属仅As、Cd、Pb和Se等4种重金属有明显富集现象,富集因子均超过500,其中夏季富集因子明显高于其它季节.春、秋和冬季4种高富集致癌重金属主要来源于北京周边的燃煤和城区机动车排放,夏季则主要来源于区域性污染源的输送.  相似文献   

19.
郝娇  葛颖  何书言  卢娜  王勤耕 《中国环境科学》2018,38(12):4409-4414
在南京市仙林地区,采用ANDERSON八级撞击采样器,于2016年秋季采集了63个大气颗粒物有效样本,并利用ICP-MS分析了金属元素的含量.结合气象等资料,研究了大气颗粒物金属元素的粒径分布与富集特征,并对其来源进行了探讨.结果表明:南京秋季大气颗粒物质量浓度的粒径分布呈双峰型,峰值分别位于0.4~1.1和3.3~9μm;金属元素的粒径分布呈3种类型,一是粗粒子单峰型,峰值位于3.3~5.8μm,主要元素包括Na、Al、Ca、Mg、Co、Ce、Sr和Ba;二是细粒子单峰型,峰值位于0.4~1.1μm,主要元素包括Zn、As、Cd、Ag、Tl和Pb;三是粗细粒子双峰或多峰型,峰值位于1.1和5μm粒径段,主要元素包括K、Se、Li、Be、Mn、V、Cu、Cr、Ni和Fe.按富集因子的大小,可将元素分为3类,低富集元素包括Ba、Ca、Ce、Sr、Mg、Fe、Co、Mn、Be和V,中富集元素包括Li、Na、Ni、K和Cr,高富集元素包括Cu、Tl、Zn、As、Pb、Ag、Cd和Se.不同的粒径分布和富集水平反映了大气颗粒物的来源特征.研究结果可以为深入认识大气颗粒物金属元素的来源及其环境与健康效应提供科学依据.  相似文献   

20.
王艳  郝炜伟  程轲  支国瑞  易鹏  樊静  张洋 《环境科学》2018,39(8):3518-3523
利用稀释采样系统,针对桶内燃烧和自然堆积两种常见露天焚烧方式,分别对橡塑类、纸类和木竹类这3种组分生活垃圾露天焚烧PM_(2.5)排放特征进行实测,计算PM_(2.5)、OC、EC、水溶性离子和无机元素排放因子.结果表明,木竹类生活垃圾PM_(2.5)排放因子(7.44±0.76)g·kg~(-1)最高,纸类PM_(2.5)排放因子(2.72±0.52)g·kg~(-1)最低.桶内燃烧的条件会造成更多污染物排放.在不同的燃烧方式下,橡塑类和纸类生活垃圾在桶内燃烧的条件下PM_(2.5)排放因子是自然堆积燃烧的2.5~3.5倍.PM_(2.5)中OC和EC为主要组成成分,PM_(2.5)组分构成占比约为46.6%~67.2%.不同垃圾组分OC/EC比率差异较大,但该比率受焚烧条件影响较小,有助于解析不同组分垃圾焚烧排放贡献.水溶性离子中NH+4离子、Cl-离子含量最高,在PM_(2.5)中所占比例范围分别为2.28%~6.35%和1.04%~14.31%.无机元素中Ca、K、Fe和Ba元素排放因子较高.重金属元素中Zn元素排放因子最高,Cu、Cr、Sb和Pb等元素也有一定富集.Zn元素含量主要由燃烧方式决定,桶内燃烧大约是自然堆积燃烧的20倍左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号