首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
天津城区春季大气气溶胶消光特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用天津大气边界层观测站2011年4月1日~5月10日气溶胶散射系数、吸收系数、PM2.5质量浓度、大气能见度和常规气象观测数据,分析了气溶胶散射系数和吸收系数的变化特征,以及气溶胶消光系数与PM2.5质量浓度和大气能见度的关系,并对两种方法计算的消光系数进行了比较.结果表明,观测期间天津城区气溶胶散射系数为369.93 Mm-1,对大气消光贡献为86.7%,气溶胶吸收系数为36.32 Mm-1,对大气消光贡献为8.5%,单次散射反照率为0.91;气溶胶散射系数和吸收系数的日变化特征具有明显的双峰结构,对应于早晚交通高峰;不同天气类型下其日分布特征存在较大差异,霾日散射系数和吸收系数最高,沙尘日和降水日次之,晴日最低;气溶胶散射系数和吸收系数与PM2.5质量浓度呈线性正相关,与大气能见度呈指数负相关,观测期间气溶胶质量散射效率均值为2.95m2/g;采用Koschmieder’s公式反算能见度获得的大气消光系数,与通过测量气溶胶散射系数、气溶胶吸收系数、气体散射系数和气体吸收系数等分量加和获得的消光系数相比一致性较好,高相对湿度天气下能见度反算值高于各系数加和值.  相似文献   

2.
不同混合方案对气溶胶辐射特性的影响   总被引:4,自引:2,他引:2  
利用体积权重平均,Maxwell-Garnett和Bruggeman理论,分别处理半径为0.5 μm 75%H2SO4气溶胶和黑碳气溶胶(BC),以及硫酸盐气溶胶与黑碳气溶胶内混合的情况,求出其复折射指数.利用Mie理论计算内混合单个气溶胶粒子在0.55 μm波长处的辐射特性参量,其目的在于比较分析3种不同混合方案处理的同一混合情况下内混合单个气溶胶粒子辐射特性的差别. 结果表明:辐射特性的总体变化趋势大致相同,但采用不同的混合方案处理相同的内混合情况时,其结果在黑碳混合比为10%~30%时差异较大.   相似文献   

3.
试验数据分析表明我国东南沿海海域是大气波导高概率发生区,实时、精确的折射指数预测预报是电子系统性能评估和系统设计的关键.通过大气折射率剖面的直接测量、基于特定高度气象参数的理论预测、GPS测量、海杂波反演技术等测量、预测预报技术的对比分析,海杂波反演技术由于实时性、保密性、设备简易等优点,是一种极具潜力的大气波导环境预...  相似文献   

4.
乌鲁木齐大气气溶胶的光学特性分析   总被引:7,自引:1,他引:7       下载免费PDF全文
根据CE318自动跟踪太阳光度计于2002年4月23日~2003年3月15日在乌鲁木齐地区进行观测取得的资料,反演得出气溶胶光学厚度、Angstrom大气浑浊度系数β和波长指数α.分析表明,气溶胶光学厚度随波长增加而降低;其日变化在春夏季起伏波动多,而冬季日变幅最大;全年气溶胶光学厚度在7月最小,3月最大,与3种主要污染物PM10、SO2和NO2浓度的月分布不尽相同;波长指数α表明春季风沙天气导致了气溶胶颗粒物半径增大,而Angstrom大气浑浊度系数β反映了夏季大气比较洁净,冬季气溶胶数量多,3月为整层大气污染最严重时期.  相似文献   

5.
青岛沿海大气气溶胶中海盐源的贡献   总被引:14,自引:2,他引:14  
王珉  胡敏 《环境科学》2000,21(5):83-85
重点研究青岛沿海地区大气气溶胶的海盐来源 .在 Na主要来自于海盐 ,Cl存在亏损的情况下 ,为确定大气气溶胶中的海盐源贡献率 ,将 Na和 Cl作为海盐源参比元素计算得到的海盐源贡献率分别作为上限和下限 ,得出青岛沿海地区大气气溶胶中海盐源的年均质量浓度贡献率大致为 6.3%~ 9.7%.海盐源对气溶胶的贡献随气溶胶粒径增大而增加 .青岛沿海大气气溶胶氯亏损在 36.2 %~ 65.9%范围内 ,是大气中气态无机氯的来源之一 .  相似文献   

6.
通过Mie散射理论公式构建目标函数,利用免疫进化算法对气溶胶等效复折射率的实部和虚部进行协同优化,据此创新性地提出了气溶胶等效复折射率反演的新途径.基于成都市2017年9~12月逐时的气溶胶散射系数和吸收系数观测数据以及该时段同时次GRIMM180大气颗粒物监测仪的连续监测资料,研究结果表明,气溶胶等效复折射率反演的免疫进化算法不仅是普适的,而且还具有收敛速度快、计算稳定和求解精度高等特点.通过与其它气溶胶等效复折射率反演方法的对比分析,进一步论证了新方法的优势,这为气溶胶等效复折射率演变机理以及气溶胶吸湿性增长模型的后续研究提供了算法保障.  相似文献   

7.
黄海海域大气气溶胶特征及重金属的大气输入量研究   总被引:20,自引:0,他引:20  
分别于1995、1996两年的春,夏两季在黄海千里岩采集66个大气气溶胶样品,测定了16种金属元素的浓度,讨论了其浓度的变化及其来源,并初步估算了大气气溶胶中这些重金属在黄海海域的沉降通量。结果表明,黄海海域大气气溶胶中大多数元素有明显的季节变化,春季的浓度大于夏季,这与大气颗粒物的浓度是一致的;黄海海域大气尘土的年沉降量为(60-900)*10^10g/a,占该海域河流每年的泥沙总输入量的4%-  相似文献   

8.
北京市冬春季大气颗粒物的粒径分布及消光作用   总被引:5,自引:2,他引:5  
2004年1─5月,在北京市区连续监测了大气环境中ρ(PM10),ρ(PM2.5),ρ(PM1)和ρ(TSP),以及大气能见度、地面气象要素.结果表明:春节期间颗粒物中细粒子所占的比例较高,ρ(PM1)/ρ(PM2.5)为0.81,ρ(PM10)/ρ(TSP)为0.61;而沙尘期其值分别为0.55和0.28.不同粒径的颗粒物质量浓度均呈在明显日变化,其夜间浓度峰值高于早晨交通繁忙时段.根据经验公式,将大气能见度换算为大气消光系数,并导出颗粒物消光系数.结果表明:颗粒物消光系数与颗粒物质量浓度呈显著正相关.进一步定义了颗粒物质量浓度消光比(CEP),用来表征颗粒物的污染特征.统计分析结果表明:当CEP<103时,颗粒物质量浓度很低,PM2.5所占比例较高,代表了有利于污染扩散的气象条件;当CEP>167,颗粒物质量浓度高,但细粒子比(ρ(PM2.5)/ρ(PM10))稳定在0.5~0.7,湿度也稳定在20%~50%,代表了不利于污染扩散的气象条件.   相似文献   

9.
郑州地区大气气溶胶光学特性的地基遥感研究   总被引:4,自引:2,他引:4       下载免费PDF全文
根据自动跟踪扫描光度计观测资料,利用Bouguer-Lamber定律反演郑州地区2007年2~9月气溶胶光学厚度和波长指数,分析郑州地区该时段气溶胶光学特性的季节变化和日变化情况.结果表明,郑州地区2007年2~9月1020nm气溶胶光学厚度为0.49±0.09;870nm气溶胶光学厚度为0.60±0.13;670nm气溶胶光学厚度为0.76±0.20;440nm气溶胶光学厚度为1.08±0.34.季节变化以夏季最高,秋冬次之,春季最低.波长指数春季为0.37~0.69,夏季为1.18~1.26.春季有50%以上的天气,扬尘粒子为主控粒子,而夏季城市-工业气溶胶是主控粒子之一.日变化规律与近地面污染物浓度变化一致,8:30和17:00左右出现峰值,11:30出现谷值,由于气温上升,湍流剧烈,12:30左右气溶胶光学厚度有1个小高峰,但仍处于全天的低值区.  相似文献   

10.
重庆市城区大气气溶胶光学厚度的在线测量及特征研究   总被引:2,自引:1,他引:2  
利用CE-318型太阳光度计(CE-318)测定了重庆市城区2010年3月至2011年2月期间的太阳直接辐射量,反演了该地区大气气溶胶光学厚度(Aerosol optical depth,AOD),并对结果进行了分析.结果表明:重庆市城区上空大气AOD随波长增加而减小,Angstrom波长指数α=1.13±0.08,大气混浊指数β=0.57±0.14.受人为源排放的影响,空气较为混浊,且上空主要分布着城市-工业型气溶胶.AOD日变幅随波长增加而减小,且AOD在短波段变化比长波段变化更为明显.重庆市城区上空AOD(λ=500 nm)日变化大致分为5种类型:平缓型、上升型、下降型、凸型和凹型,其中,平缓型出现频率最低,凸型和上升型是主要变化类型.四季中AOD日变化特征在夏秋季较一致,冬春季较一致.AOD(λ=500 nm)全年主要呈现"V"字形特征,年均值为1.25±0.29,最低值出现在夏季,最高值出现在冬季;α全年变化范围在0.90~1.23,同AOD整体上呈负相关趋势,最低值出现在春季,最高值出现在夏季,且四季α值较大,表征气溶胶主控模态为细粒子,受人为源的排放影响较大.  相似文献   

11.
大气气溶胶有效折射率的计算及相对湿度对它的影响   总被引:2,自引:0,他引:2  
为了了解气溶胶折射率对研究大气气溶胶的辐射效应的影响,给出了一种基于气溶胶散射和吸收特性的有效媒介近似方法,以计算大气气溶胶的有效折射率。用此方法计算所得北京冬季气溶胶的有效折射率为1.561-0.057i,其与实测值相比是比较一致的。  相似文献   

12.
为研究北京市气溶胶垂直方向上的分布特征,利用微脉冲激光雷达(MPL)对北京市2015年12月—2016年11月的气溶胶光学特征进行分析,讨论了气溶胶消光系数的季节性特点以及不同污染等级下的垂直分布,并对其影响因素进行了探讨.结果表明:①北京市气溶胶消光系数垂直特征在季节上存在异质性.秋、冬两季近地面1.0 km以下气溶胶消光系数显著增大,最大气溶胶消光系数大于1.0 km-1;春、夏两季污染日较少,气溶胶消光系数在垂直方向上变化较为平缓.②不同污染等级下气溶胶消光系数的垂直特征差异明显.空气质量为优-良水平时,气溶胶消光系数较低,基本不高于0.7 km-1;轻-中度污染时,气溶胶消光系数在不同季节差异较大,冬、春两季气溶胶消光系数不超过0.8 km-1,夏、秋两季在1.0 km-1左右,部分监测站甚至在1.4km-1左右;重度及以上污染时,气溶胶消光系数基本在1.0 km-1以上,最高可达1.7 km-1.③105 m处气溶胶消光系数...  相似文献   

13.
2010年1月北京城区大气消光系数重建及其贡献因子   总被引:2,自引:5,他引:2  
于2010年1月1~31日在北京城区每天采集PM2.5样品.利用热光碳分析仪、离子色谱和X荧光光谱仪分别分析样品中有机碳/元素碳、水溶性离子和土壤元素,同步收集了大气散射系数(bsp)、吸收系数(bap)和气象数据.利用IMPROVE方程重建大气消光系数,并与实测大气消光系数进行对比.结果发现,PM2.5日均值质量浓度为(144.3±89.1)μg.m-3,实测值bap、bsp和消光系数(bext)分别为(67.4±54.3)、(328.5±353.8)和(395.9±405.2)Mm-1.IMPROVE方程适用于观测期间北京大气消光系数的解析.观测期间计算值b’ext均值为(611±503)Mm-1,(NH4)2SO4、NH4NO3、OM、EC和FS对b’ext的贡献分别为24.6%、11.6%、45.5%、11.9%和6.4%.  相似文献   

14.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

15.
天津城区2019年2~3月气溶胶粒径分布特征观测分析   总被引:1,自引:0,他引:1  
郝囝  蔡子颖  刘敬乐  王晓佳  姚青 《环境科学》2022,43(8):3903-3912
气溶胶粒径分布是反映气溶胶粒子来源、形成过程和污染特征的重要物理参数,为研究天津城市地区气溶胶数浓度和谱分布特征及其影响因素,利用扫描电迁移率颗粒谱仪(SMPS)对2019年2~3月天津河西区10~600 nm气溶胶数浓度粒径分布进行了采样分析.结果表明,冬末春初天津市10~600 nm气溶胶数浓度、表面积浓度和体积分数分别为22188.22 cm-3、1581.08 μm2·cm-3和70.76μm3·cm-3,气溶胶数浓度、表面积浓度和体积分数谱均为单峰分布,峰值粒径分别位于109.40、269.00和429.40 nm.核模态(10~20 nm)、爱根核模态(20~100 nm)和积聚模态(100~600 nm)粒子数浓度分别占气溶胶总数浓度的1.40%、52.44%和46.16%.气溶胶数浓度日变化具有明显的周末效应,工作日为三峰分布,峰值出现在道路交通早晚高峰和午后,周末呈双峰分布,峰值出现在道路交通早晚高峰且出现时间比工作日推迟1~2 h,汽车尾气排放对城区气溶胶浓度增加起重要作用.气象条件对天津城区气溶胶粒径分布有明显影响,气溶胶在偏东风和西南风条件下数浓度较高,非降水日相对湿度(RH)增加导致气溶胶谱分布向大粒径方向移动,随着RH由小于20%升高到50%~60%,气溶胶数浓度谱峰值粒径由50nm增大到131 nm,降水对100~200 nm气溶胶粒子有明显的清除作用,降水过程导致气溶胶谱峰值粒径减小到98 nm.  相似文献   

16.
目的对比分析IMPROVE方程的改进算法(Revised IMPROVE)和MIE方法在北京地区计算消光系数的适用性。方法基于2012年6月3日至6月30日北京地区大气颗粒物成分的浓度观测数据,分别采用Revised IMPROVE和MIE方法计算颗粒物的消光系数,其中MIE方法的粒径分布采用总量双峰分布体积谱和化学组分体积谱两种方案进行循环试验获取最优拟合结果,使用散射积分浊度计和黑碳仪的实测数据对计算结果进行对比分析。结果 RevisedIMPROVE方程、总量双峰体积谱MIE方法和化学组分体积谱MIE方法都能较好地计算出了大气颗粒物消光系数,与观测结果回归方程的相关系数R分别达到0.952、0.9686和0.9734。体积谱分布参数的循环试验方法还同时可以获得气溶胶的体积谱分布参数,总量双峰体积谱和化学组分体积谱MIE方法得到的细颗粒和粗颗粒几何平均粒径分别为0.74、7.5μm和0.48、6.0μm。结论采用化学组分体积谱MIE方法计算的消光系数与观测结果最为接近,Revised IMPROVE方程也有较好的准确性,采用化学组分体积谱MIE方法得到的颗粒物体积谱峰值与实际观测结果也较为一致。  相似文献   

17.
天津市春季气溶胶消光特征和辐射效应的数值模拟   总被引:3,自引:1,他引:3       下载免费PDF全文
根据GRIMM气溶胶粒谱分析仪对粒子数浓度在线观测资料,拟合了天津市春季霾日和非霾日的气溶胶粒子谱分布,结合同期气溶胶样品化学组分分析结果,利用米散射理论计算分析霾日和非霾日气溶胶消光特征.在此基础上,对辐射传输模式LOWTRAN7中气溶胶光学参量进行了修正,利用修正后的模式模拟霾日和非霾日的地面辐射通量密度.结果表明,观测期间非霾日气溶胶消光系数平均为0.253km-1,散射系数平均为0.213km-1.霾日气溶胶消光系数平均为0.767km-1,散射系数平均为0.665km-1.对比模式计算的辐射通量密度与观测值,表明短波辐射模拟效果较好.  相似文献   

18.
为了解天津市2020年冬季重污染过程气溶胶消光特征,基于2020年1~2月高时间分辨率的在线监测数据,对1月16~18日(重污染过程Ⅰ)、1月26~28日(重污染过程Ⅱ)和2月9~10日(重污染过程Ⅲ)进行气溶胶消光特性及其来源分析.结果表明,3次重污染过程PM2.5平均浓度分别为(229±52)、(219±48)和(161±25)μg·m-3,NO3-、SO42-、NH4+、OC、EC、Cl-和K+为PM2.5中主要组分.3次重污染过程气溶胶散射系数(Bsp550)和吸收系数(Bap550)分别为(1055.65±250.17)、(1054.26±263.22)、(704.44±109.89) Mm-1和(52.96±13.15)、(39.72±8.21)、(34.50±8.53) Mm-1,散射效应高于吸收效应.重污染天气下硝酸盐(38.9%~48.8%)、硫酸盐(31.1%~40.7%)和OM (9.9%~21.8%)为PM2.5中最主要消光成分.3次重污染过程PM2.5组分对气溶胶消光的贡献发生明显变化,重污染过程Ⅰ,硝酸盐对消光系数的贡献最高;重污染过程Ⅱ,受春节期间烟花爆竹燃放影响,OM对消光系数的贡献升高;重污染过程Ⅲ,交通出行减少但燃煤源排放相对稳定,硝酸盐对消光系数的贡献降低,硫酸盐的贡献升高.来源解析结果显示,重污染天气气溶胶消光的主要来源为二次无机气溶胶(37.1%~42.0%)、燃煤和工业(22.9%~24.2%)、机动车(23.9%~27.2%)、扬尘源(5.0%~6.4%)和烟花爆竹及生物质燃烧排放(3.9%~6.2%).与重污染过程Ⅰ相比,重污染过程Ⅱ烟花爆竹及生物质燃烧排放对消光系数的贡献升高;重污染过程Ⅲ机动车对消光系数的贡献明显降低;燃煤和工业对消光系数的贡献在3次重污染过程中较接近.后轨迹分析表明,重污染天气期间天津市主要以来自河北的小尺度、短距离以及内蒙古中部的中尺度、中短距离气团传输轨迹为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号