首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
浙江省人为源VOCs排放清单   总被引:1,自引:0,他引:1  
基于挥发性有机物(VOCs)活动水平数据和相关排放因子,建立了浙江省人为源VOCs排放清单。结果表明:2009年浙江省VOCs排放总量为1.47×10~6t,其中工业排放源1.34×10~6 t,生活排放源1.176×10~5t,生物质燃烧源1.18×10~4t,分别占排放总量的91.17%、8.03%和0.8%;VOCs排放量最大的行业为纺织印染业、金属制品制造业、化学药品原药制造业、石油炼制、石油化工业等9大行业,其VOCs排放量均在5×10~4t以上,占全省总排放量的比例高达90%,为浙江省主要排放源;VOCs排放量最高的城市分别为杭州、宁波、温州、绍兴、嘉兴和湖州。  相似文献   

2.
江苏省人为源挥发性有机物排放清单   总被引:1,自引:0,他引:1       下载免费PDF全文
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提. 对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单. 结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业. 南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位. 各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.   相似文献   

3.
江苏省人为源挥发性有机物排放清单   总被引:3,自引:0,他引:3  
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提.对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单.结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业.南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位.各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.  相似文献   

4.
苏州市人为源挥发性有机物排放清单研究   总被引:4,自引:0,他引:4  
以2009年为基准年,使用排放因子法估算了苏州市人为源的VOCs排放量,建立了苏州市分行业的挥发性有机物排放清单。结果表明2009年苏州市VOCs排放量17.79万吨,其中工业源和移动源排放量最大,分别为10.15万吨和6.29万吨,生活源和生物质燃料燃烧源的排放量分别为0.62万吨和0.73万吨。除移动源外(占比35%),金属制品制造、通用设备及专用设备制造、机械制造等行业的(涂装)VOCs排放量最大,占总排放量的20%,其次为塑料制品制造、轮胎制造、黑色和有色金属冶炼、合成材料,上述6个行业的VOCs排放量占排放总量的80%以上,是苏州市VOCs排放的重点行业。  相似文献   

5.
通过调研分析苏州大市范围内的农业、工业、生活及交通等相关活动水平数据,采用排放因子法建立了2013年苏州市人为源氨排放清单. 结果表明:2013年苏州市人为源氨排放总量为22 020.18 t,排放强度为3.06 t/km2;畜禽养殖、工业源、氮肥施用是苏州市氨排放的主要来源,排放量分别为8 080.99、7 103.50、4 841.23 t,共占氨排放总量的90.94%. 其中,工业源的氨排放分担率为32.25%,高于全国平均值,火电行业和化肥制造行业的氨排放占工业源排放总量的90.14%,烟气脱硝过程的氨逃逸值得关注;在畜禽源中,肉鸡和生猪是最大的氨排放源,二者排放量分别占畜禽养殖氨排放总量的42.59%和37.14%. 太仓、张家港、常熟依次为苏州市氨排放量和排放强度最大的3个地区,共占氨排放总量的69.02%,苏州市区氨排放量位列第四但排放强度最低. 空间分布特征表明,苏州市东北部氨排放较集中,中部排放量较小,周边地区特别是沿江县级市的排放量较大. 研究显示,氨排放清单的建立可为苏州市氨排放控制提供基础数据.   相似文献   

6.
西安市人为源挥发性有机物排放清单及研究   总被引:12,自引:1,他引:11  
对西安市各类VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究的最新成果,采用排放因子法建立了西安市2014年人为源VOCs排放清单.结果表明:2014年西安市人为源大气VOCs排放量为11.51×104t,其中,固定燃烧源、生物质燃烧源、工艺过程源、有机溶剂使用源、移动源、油品存储与销售源和废弃物处理源的排放量分别占VOCs排放总量的2.53%、3.32%、13.30%、51.50%、23.64%、4.82%和1.02%.油墨印刷、建筑涂料和汽车喷涂为有机溶剂使用源重点排放行业,VOCs排放量占到排放总量的48.89%;工艺过程源中化学药品、医药制造、原油加工和化学纤维为重点排放行业,VOCs排放量占到排放总量的10.19%.各区县中,长安区、雁塔区、未央区、碑林区VOCs排放量明显较高,其分担率分别为16.53%、14.88%、14.47%和12.99%.  相似文献   

7.
为研究西安市人为源VOCs(挥发性有机物)对OFP(O3生成潜势)和SOAFP(二次有机气溶胶生成潜势)的影响,基于西安市环境统计数据和相关统计资料,结合排放因子法和已有的源成分谱,建立西安市人为源VOCs排放清单,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算各类人为源排放VOCs对O3和SOA(二次有机气溶胶)的生成贡献.结果表明:①2016年西安市人为源VOCs排放总量为119.187×103 t,其中,溶剂使用源、移动源和工艺过程源是主要的排放源,排放量分别为50.676×103、29.414×103、24.430×103 t. ②2016年西安市各区县VOCs排放总量较大的依次为长安区、雁塔区、未央区和碑林区,排放量分别为15.28×103、12.34×103、11.81×103和10.14×103 t,莲湖区、新城区和灞桥区VOCs排放量大于5×103 t,而阎良区排放量最小. ③2016年西安市总OFP为222.087×103 t,间/对-二甲苯、甲苯、邻-二甲苯等对总OFP的贡献率为72.40%;溶剂使用源对总OFP的贡献率最大,其次是生物质燃烧源,并且生物质燃烧源单位质量VOCs的OFP最强. ④2016年西安市总SOAFP为318.347 t,间/对-二甲苯、甲苯、邻-二甲苯、乙苯等对总SOAFP的贡献率为88.65%;溶剂使用源对总SOAFP的贡献率最大,其次是生物质燃烧源,而且溶剂使用源单位质量VOCs的SOAFP强于其他排放源.研究显示,与其他地区VOCs单位面积排放清单相比,西安市VOCs单位面积排放强度处于中等水平.   相似文献   

8.
采用排放系数法与“自下而上”的活动水平数据收集方法,建立了鹤壁市化石燃料固定燃烧源、工艺过程源、溶剂使用源、储存运输源、废弃物处理源等固定源、移动源、餐饮油烟和生物质燃烧等面源的VOCs排放清单.结果表明:鹤壁市2017年VOCs排放总量为8829.7t.其中,工艺过程源排放量最大(3052.5t),占VOCs总排放量的32%;其次是移动源(2712.8t)和溶剂使用源(1447.1t),分别占总排放量的29%和15%;从空间分布看,浚县的VOCs排放量最大(3444.0t),其次为淇滨区(1519.4t)、山城区(1516.0t)、淇县(1103.8t)和鹤山区(1041.9t);其中,机动车(1932.0t)、建材冶金(903.6t)、化学制品制造(829.6t)、橡塑(646.8t)等VOCs排放量较大.对比河南省省会郑州市、同为煤炭资源型城市焦作市,鹤壁市的VOCs排放总量是郑州市的1/11,焦作市的1/3.但鹤壁市单位面积的VOCs排放量较大,是郑州市的1/3,焦作市的1/2,且鹤壁市单位GDP的VOCs排放量与郑州市和焦作市非常接近.说明鹤壁市VOCs排放总量低,但排放强度较高,仍需要加大减排力度.根据本清单的研究结果,建议鹤壁市可着重加强工艺过程源和移动源的减排,重点减排区域为浚县、鹤山区和淇滨区的交汇地带,重点减排机动车、建材冶金、化学制品制造等;此外,还应关注橡塑、餐饮油烟、工业生物质锅炉等行业的VOCs排放.  相似文献   

9.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

10.
基于广东省粮食产量的统计年鉴,建立了广东省2008~2016年秸秆燃烧污染物排放清单和2016年广东省秸秆燃烧VOCs物种清单,并对VOCs臭氧生成潜势进行评估.结果表明,2013~2016年广东省秸秆燃烧各大气污染物排放量较2008~2012年有所降低.这主要是由于禁止秸秆露天燃烧政策的出台及农村生活水平的提高降低了秸秆燃烧比例.2016年各类大气污染物SO_2、NO_x、NH_3、CH_4、EC、OC、NMVOC、CO和PM_(2.5)的排放量依次为2 443.7、16 187.9、6 943.8、29 174.4、3 625.5、14 830.7、65 612.6、591 613.9和49 463.0 t.稻谷秸秆燃烧是最主要的秸秆燃烧污染物来源,占据了污染物总排放量的约68.55%.污染物贡献最大的5个市分别为湛江、茂名、梅州、肇庆和韶关,约占总排放量的58.63%.2016年广东省秸秆燃烧VOCs物种排放清单中,排放量贡献前10的物种分别为:乙烯、乙醛、甲醛、苯、乙炔、丙烯、乙烷、甲苯、正丙烷和丙醛,占总VOCs量的67.91%.在VOCs物种清单的基础上估算了其臭氧生成潜势(OFP),OFP贡献前10 VOCs物种分别为:乙烯、甲醛、乙醛、丙烯、1-丁烯、丙醛、甲苯、丙烯醛、异戊二烯和丁烯醛,占总OFP量的80.83%.  相似文献   

11.
崔茹  莫梓伟  袁斌  邵敏 《环境科学学报》2021,41(6):2272-2281
溶剂使用源是挥发性有机物(VOCs)的重要排放源之一.近年来,VOCs排放清单中对工业生产类溶剂的VOCs排放估算较多,但对于生活类溶剂使用的研究有所欠缺.本研究以日化用品为研究对象,基于产品消费量、产品中的溶剂含量及其挥发特性,建立了我国2000—2017年日化用品使用的VOCs排放清单,并基于最大增量反应活性值(MIR)评估了日化用品对臭氧生成的潜在贡献.结果表明,2000年我国日化用品VOCs排放量为36.1×104 t,到2017年排放量达218.5×104 t,年平均增长率为11%.护肤品、香水和洗护用品是日化用品中VOCs的主要排放类别,2017年这3类的VOCs排放量分别占总量的40%、30%和21%.上海(8.0×104 t)、北京(7.0×104 t)、广州(4.5×104 t)、重庆(4.5×104 t)、深圳(3.7×104 t)是日化用品VOCs排放量前5的城市.含氧VOCs是日化用品排放的主要VOCs组分,其排放量贡献达到64%.2017年日化用品VOCs产生的臭氧生成潜势(OFP)为306.4×104 t,含氧VOCs、烯烃和烷烃分别占OFP总量的67%、18%和14%.对OFP贡献最大的前8个物种是乙醇、柠檬烯、异丁烷、丙二醇、二丙二醇、异戊烷、二甲醚和异丙醇,其排放量占VOCs总量的77%,但贡献了OFP总量的93%.针对日化用品的VOCs排放及其引起的臭氧污染防控应重点关注护肤品、香水和洗护用品3类产品.  相似文献   

12.
江苏省人为源VOCs排放清单及其对臭氧生成贡献   总被引:1,自引:0,他引:1  
夏思佳  刘倩  赵秋月 《环境科学》2018,39(2):592-599
基于江苏省工业、能源、环境等活动水平数据,结合排放因子法和源成分谱研究成果,建立了江苏省分市、分行业、分物种人为源VOCs排放清单,利用最大增量反应活性(MIR)估算了其对臭氧的生成贡献.结果显示,江苏省2015年VOCs人为源排放量为192.78万t,化石燃料燃烧、工业过程源、有机溶剂使用源、生物质燃烧源、移动源、有机溶剂储运源排放质量分数分别为7.38%、27.93%、39.56%、3.55%、16.18%、5.39%.苏州、南京、徐州3市VOCs排放量居全省前三位,均超过20万t.56种臭氧前驱物所产生的臭氧生成潜势(OFP)总量为542.95万t,行业分布与VOCs排放总量的行业分布相似,机械设备制造、交通工具制造、建筑装饰等涂装行业对OFP的贡献比例是VOCs排放总量贡献比例的1.3~1.6倍,控制喷涂行业等量的VOCs会产生更大的OFP削减.对OFP贡献大的前10位物种分别是间/对-二甲苯、乙烯、丙烯、1,3-丁二烯、甲苯、邻-二甲苯、1-丁烯、乙苯、1,2,4-三甲基苯、对-乙基甲苯,对总OFP的贡献为75.63%.  相似文献   

13.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   

14.
徐晨曦  陈军辉  李媛  何敏  冯小琼  韩丽  刘政  钱骏 《环境科学》2020,41(10):4482-4494
本研究根据自下而上和自上而下相结合的方法收集四川省人为源活动水平数据,其中工业源活动水平来自四川省第二次污染源普查数据,涵盖11 020台锅炉信息、 60 078家工业企业信息,成都市收集了19152家工业企业数据,占四川省企业总数的32%.各污染源选取合理的排放因子并结合GIS技术,构建了该地区2017年9 km×9 km人为源大气污染物排放清单.结果表明, 2017年四川省SO2、 NOx、 CO、 PM10、 PM2.5、 BC、 OC、 VOCs和NH3排放总量分别为308.6×103、 725.7×103、 3 131.2×103、 927.6×103、 422.4×103、 30.2×103、 72.0×103、 600.9×103和887.1×103t.固定燃烧源和工艺...  相似文献   

15.
为探讨东莞典型工业区夏季大气挥发性有机物(VOCs)污染特征及来源,于2020年夏季在厚街镇对大气环境中56种VOCs开展了在线观测,并同步收集了臭氧(O3)、氮氧化物(NOx)和一氧化碳(CO)等气体污染物浓度和气象因子等资料,在此基础上分析了VOCs总体积分数和主要物种体积分数特征,进一步估算了主要VOCs物种对臭氧生成潜势的贡献和不同臭氧浓度下VOCs的主要污染源贡献率.结果表明,观测期间56种VOCs的体积分数平均值为53.1×10-9,其中φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别为24.7×10-9、23.7×10-9、3.9×10-9和0.7×10-9.与非臭氧污染期间相比,臭氧污染期间φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别上升约10%、43%、38%和98%.无论是臭氧污染还是非臭氧污染期间,芳香烃对臭氧生成潜势的贡献率均最大,其次为烷烃、烯烃和炔烃.整个夏季观测期间,溶剂源、液化石油气泄漏、化石燃料燃烧源和油气挥发源对VOCs的贡献率分别为60%±20%、16%±11%、15%±11%和9%±6%;臭氧污染期间,溶剂源的贡献率下降到44%,而液化石油气泄漏和油气挥发源的贡献率分别上升到21%和16%.  相似文献   

16.
四川省人为源大气污染物排放清单及特征   总被引:16,自引:14,他引:2  
在收集四川省各城市人为污染源活动水平数据基础上,基于自下而上和自上而下结合的清单构建方法,选取排放因子并结合GIS技术,建立了该地区2015年1 km×1 km人为源大气污染物排放清单.结果表明,2015年四川省人为源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放量分别为444.9×10~3、820.0×10~3、3 773.1×10~3、1 371.6×10~3、537.5×10~3、28.7×10~3、53.1×10~3、923.6×10~3和988.0×10~3t.电厂和工业锅炉等燃煤排放贡献了95%以上的SO_2,移动源、化石燃料燃烧源和工艺过程源分别贡献了54%、23%和20%的NO_x,以钢铁和建材制造为主的工艺过程源分别贡献了20%的PM_(10)和34%的PM_(2.5),以道路扬尘为主的扬尘源分别贡献了60%的PM_(10)和35%的PM_(2.5),生物质燃烧分别贡献了33%的BC和51%的OC,以机械加工、建筑装饰、电子设备制造、印刷和家具等行业为主的溶剂使用源贡献了46%的VOCs,NH_3主要来自畜禽养殖和氮肥施用等农业部门排放,分别占总排放量的70%和25%.污染物空间分布结果显示,四川省各项大气污染物主要集中分布于人口最为密集,农业和工业均较为发达的四川盆地和攀枝花部分区域,其中,以成都、德阳和绵阳为代表的成都平原城市群为四川盆地内的主要排放高值区域.所建立的排放清单存在一定不确定性,后续研究中应针对活动水平数据获取的不足开展数据收集工作,加强排放贡献较大典型污染源的排放因子本地化研究工作,逐步完善四川省大气污染物排放清单,为四川省复合型大气污染研究和防治提供科学支撑.  相似文献   

17.
为了解宜宾市冬季VOCs(volatile organic compounds,挥发性有机物)污染特征,于2016年12月选取宜宾市2个国控环境监测点位,采集冬季环境空气VOCs样品,利用三级冷阱预浓缩仪-气相色谱质谱联用仪(GC-MS)测定大气中89种VOCs物种,分析VOCs体积分数及其物种组成情况,并对其主要来源进行识别.结果表明:宜宾市区冬季环境空气中φ(VOCs)平均值为35.10×10-9,φ(VOCs)最高值和最低值分别为67.34×10-9、20.58×10-9;监测VOCs物种类别中芳香烃占比最高,其次为烷烃、卤代烃;体积分数较大的VOCs物种主要为苯、甲苯、氯甲烷、二氯甲烷、异丁烷、异丙醇、正丁烷等.CMB(化学质量平衡)模型源解析宜宾市冬季环境空气VOCs的六大主要贡献源分别为移动源、油气挥发源、溶剂使用源、工艺过程源、生物质燃烧源和其他源.以2015年为基准年,利用排放因子法对宜宾市VOCs进行排放量计算发现,宜宾市VOCs年排放量为39.54×103 t,其中,工艺过程源、溶剂使用源、移动源、化石燃料燃烧源的贡献率分别为35.5%、24.5%、28.9%、8.0%.研究显示,对宜宾市冬季环境空气中VOCs贡献率较大的污染源分别为移动源、溶剂使用源、工艺过程源等。   相似文献   

18.
长三角地区典型城市非道路移动机械大气污染物排放清单   总被引:8,自引:8,他引:8  
本研究选取上海和杭州两市开展了非道路移动机械的实地调查,分析了各城市非道路移动机械的种类构成、使用特点、燃料类型、功率分布和排放标准等级,在此基础上建立了城市尺度非道路移动机械排放清单技术方法,编制了上海和杭州市2014年非道路移动机械大气污染物排放清单.结果表明,上海和杭州市非道路移动机械柴油消费分别为6.1×10~5t和3.2×10~5t,NO_x排放分别为3.09×10~4t和1.72×10~4t,PM_(2.5)排放分别为1.41×10~3t和8.1×10~2t,其中,挖掘机等建筑市政施工机械的排放贡献最为突出.非道路移动机械NO_x排放分别占两城市所有源的11.1%和16.1%,占流动源的18.5%和32.2%,已成为城市大气污染的重要来源之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号