首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon assimilation and lipid production were studied in phytoplankton in Balsfjorden and Ullsfjorden, northern Norway, during the exponential growth phase of the spring bloom in 1983 (6–7 April). In Balsfjorden, phytoplankton biomass was constant with depth and equivalent to 1.5 g chlorophyll a 1-1. Phytoplankton biomass in Ullsfjorden varied with depth, with a maximum of ca. 7 g chlorophyll a 1-1 occurring at 5 to 10 m. Particulate carbon-14 assimilation was about 18 mg C per m-2 h-1 in Balsfjorden and about 39 mg C per m-2 h-1 in Ullsfjorden over the depth range 4 to 8 m. In Balsfjorden, the percentage of total fixed carbon recovered as total lipid was 14.7 and 20.4% at 4 and 8 m depth, respectively. In Ullsfjorden, the corresponding values were 8.8 and 28.1% at 4 and 8 m, respectively. The percentages of total fixed carbon present as fatty acids were 1.1 and 1.6% at 4 and 8 m, respectively, in Balsfjorden, and 0.8 and 6.4% at 4 and 8 m in Ullsfjorden. The majority of the radioactivity in lipid at both locations and at both depths was present as polar lipid, with small percentages present in triacylglycerols and very small percentages present in free fatty acids. On average, about 18% of the total carbon-14 incorporated into phytoplankton over a 6 to 7 h mid-day period was recovered as total lipid and its percentage tended to increase with depth. The relatively low percentage of incorporated carbon-14 present as fatty acids in total lipid implies that most of the radioactivity is present in glyceryl and/or glucosyl moieties and that measurement of total radioactivity in total lipid does not necessarily give an accurate estimation of lipogenesis in phytoplankton. Fatty acid analyses of total phytoplankton in Balsfjorden and Ullsfjorden in 1983 and of a surface slick at the end of a bloom of Phaeocystis pouchetii in Balsfjorden in May 1980 showed an abundance (more than 40% of the total) of (n-3) polyunsaturates in all cases. C-18 polyunsaturates, especially 18:4 and 18:5, were very abundant (about 30% of the total) in the P. pouchetii surface slick in Balsfjorden in 1980. Both P. pouchetii biomass and C-18 polyunsaturates were more abundant in Ullsfjorden than in Balsfjorden (1983). Lipids from the P. pouchetii surface slick were deficient in C-16 polyunsaturates and relatively deficient in C-20 polyunsaturates, but both these classes of fatty acids were abundant in Balsfjorden and Ullsfjorden in 1983. The phytoplankton in both locations in 1983 was dominated by P. pouchetii and diatoms; Chaetoceros socialis was especially abundant in Balsfjorden. The results are discussed in terms of the fatty acids present in herbivorous zooplankton in northern Norwegian fjords.  相似文献   

2.
The effect of ambient ammonium concentration on the nitrate uptake rate of marine phytoplankton was investigated. These studies consisted of laboratory experiments using unialgal species and field experiments using natural phytoplankton communities. In laboratory experiments, ammonium suppressed the uptake rates of nitrate and nitrite. Approximately 30 min were required for ammonium to exhibit its fully inhibitory effect on nitrate uptake. At high ammonium concentration (>3 g-at/l), a residual nitrate uptake rate of approximately 0.006 h-1 was observed. When the ambient ammonium concentration was reduced to a value less than 1 g-at/l, the suppressed nitrate uptake rate subsequently attained a value comparable to that observed before the addition of ammonium. A range of 25 to 60% reduction in the nitrate uptake rate of natural phytoplankton communities was observed at ambient ammonium concentrations of 1.0 g-at/l. A mechanism is proposed for the suppression of nitrate uptake rate by ammonium through feedback control of the nitrate permease system and/or the nitrate reductase enzyme system. The feedback control is postulated to be regulated by the level of total amino acids in the cell.Contribution No. 936 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA. This paper represents a portion of a dissertation submitted to the Department of Oceanography, University of Washington, Seattle, in partial fulfillment of the requirements for the Ph.D. degree.  相似文献   

3.
In August 1984, hourly measurements of photosynthetic characteristics were carried out during 96 h, at 5 and 10 m, on a natural population of phytoplankton in the St Lawrence Estuary. Synchronous circadian variations of similar amplitude (max./min.: 2 to 3) were observed at the two depths in both the photosynthetic capacity (P m B ) and the photosynthetic efficiency (B). Maximum values occurred at around noontime and minima during the night. Estimates of daily specific productivity were computed with and without the observed circadian variability. Large differences (15 to 70%) were evidenced between estimates.Contribution to the programs of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and of the Maurice Lamontagne Institute (Department of Fisheries and Oceans)  相似文献   

4.
5.
对农桐间作(以桐为主间作型)的养分循环规律进行了研究。结果表明,泡桐各器官营养元素的含量随季节而变化。对营养元素的年吸收量为471.9595kg/hm ̄2,其中氮155.1429kg/hm ̄2,磷80.0821kg/hm ̄2,钾87.0394kg/hm ̄2,钙119.4603kg/hm ̄2,镁30.2348kg/hm ̄2。营养元素的年归还量为331.6155kg/hm ̄2,其中氮102.5721kg/hm ̄2,磷43.2922kg/hm ̄2.钾63.6497kg/hm ̄2,钙97.3586kg/hm ̄2,镁24.7429kg/hm ̄2。营养元素的循环率为70、26%,其中氮66.11%,磷54.06%,钾73.13%,钙81.50%,镁81.84%。  相似文献   

6.
Data on phytoplankton primary production, biomass, and species composition were collected during a 5 yr (1985–1989) study of Auke Bay, Alaska. The data were used to examine the interannual differences in the timing, duration, and magnitude of the spring phytoplankton blooms during each year and to relate these differences to interannual variations in weather patterns. Within any given year, a pre-bloom phase was characterized by low available light, low rates of primary production, low biomass, and predominantly small (<10µm) diatoms. During the primary bloom, integrated production rates rose to 4 to 4.5 g C m–2 d–1, and integrated biomass levels reached 415 to 972 mg chlorophyll m–2. Primary blooms were usually dominated by large diatoms (Thalassiosira spp.), and in a single year (1989) byChaetoceros spp. The primary blooms terminated upon nutrient depletion in the euphotic zone. Secondary blooms, triggered by nutrient resupply from below, occurred sporadically after the primary bloom and accounted for 4 to 31% of total spring production. The date of initiation and the duration of the primary bloom varied little from year to year (standard deviation 3 and 5 d, respectively). Seasonal production rates and biomass levels varied interannually by a factor of 2 to 3. In contrast, intra-annual variations of more than an order of magnitude, especially in biomass, occurred over periods as short as 10 d. These large variations over short time periods indicate the importance of synchronous timing between spring blooms and the production of larval fish and shellfish, which depend on an appropriate and adequate food supply for growth and survival. Parameters describing primary production (e.g. peak daily production, mean daily production, and total production during the primary bloom and the entire season) exhibited little interannual variation (coefficient of variation, CV = 10 to 19%), but a large degree of intra-annual variation (CV = 77 to 116%). Similarly, interannual variations in biomass (peak chlorophyll, mean chlorophyll) were also lower (CV = 20 to 33%) than intra-annual variations (CV = 85 to 120%).  相似文献   

7.
Diurnal variation of nitrogen cycling in coastal,marine sediments   总被引:6,自引:0,他引:6  
A closed chamber technique was developed to determine the emission of microbially produced N2O from an estuarine sediment. A diurnal variation was observed; maximum emissions of 0.4 to 4.0 mol N2O–N m-2 h-1 were recorded at night whereas the rates were low or even negative, -0.4 to 0.4 mol N2O–N m-2 h-1, during the day. The bacterial denitrification located in the uppermost centimeter was apparently the major source of the emitted N2O. The diurnal emission pattern was thus inversely related to the O2 availability at the sediment surface; in the dark, the lack of O2 production by benthic photosynthesis allowed the denitrification to occur closer to the sediment-water interface and was likely to enhance the release of N2O to the water. The daily averages for the emission were about 40 mol N2O–N m-2 d-1 for three investigation periods in autumn (November), winter (February) and spring (April), whereas no significant emission was recorded in the NO 3 - -depleted sediment in early summer (June). In this estuary, the N2O emissions from the sediment were significant contributions to the overall release of N2O to the atmosphere.  相似文献   

8.
Rates of accumulation, transformation and availability of sediment nitrogen in four mangrove forests of different age and type in southern Thailand were examined in relation to forest net canopy production. Net ammonification (range: 0.3-2.3 mmol N m-2 day-1), nitrification (range: 0-0.7 mmol N m-2 day-1) and nitrogen fixation (range: 0-0.6 mmol N m-2 day-1) in surface sediments equated to <10% of canopy nitrogen demand (range: 7.5-32 mmol N m-2 day-1). By mass balance, we estimated that most of the nitrogen required for tree growth must be derived from root-associated nitrogen fixation and/or mineralisation processes occurring possibly to the maximum depth of live root penetration (75-100 cm). Denitrification, nitrification, rainfall and tidal exchange were comparatively small components of sediment nitrogen flow. Denitrification (range: 0-3.8 mmol N m-2 day-1) removed 3-6% of total nitrogen input at three Rhizophora forests, but removed 23% of total nitrogen input in a high-intertidal Ceriops forest. Nitrogen burial ranged from 4% to 12% of total nitrogen input, with the greatest burial rates in two forests receiving the least tidal inundation. Inputs of nitrogen to the forests were rapid (range: 11-37 mmol N m-2 day-1), likely originating from upstream sources such as agricultural and industrial lands, sewage and shrimp ponds. Our results indicate that ~70% to 90% of the nitrogen supplied to the forest floor is shunted via the ammonium pool to trees to sustain the rapid rates of net canopy production measured in these forests. Differences in plant-sediment nitrogen relations between the forests appeared to be a function of the interaction between intertidal position and stand age.  相似文献   

9.
Seasonal variations in Delaware Bay phytoplankton community structure   总被引:1,自引:0,他引:1  
Whole-water phytoplankton samples were obtained from 3 stations in Delaware Bay on a once- or twice-monthly basis from June 13, 1974 to May 28, 1975. The flora was composed primarily of small flagellates during the summer and early fall, while diatoms dominated from October to May. Peak cell numbers occurred during fall and early spring blooms. Evenness diversity was lowest during periods of maximum diatom abundance and highest when microflagellates predominated. There was a gradual shift in dominance, except during the early spring Skeletonema costatum bloom. Cluster analysis allowed the separation of the flora into 3 time groups and 8 recurrent species groups. The species composition and community structure of Delaware Bay phytoplankton is compared with other USA east-coast estuaries where comparable sampling techniques have been used.Contribution No. 129 from the Ira C. Darling Center and No. 129 from the College of Marine Studies.  相似文献   

10.
Changes in the phosphorus components of the particulate matter in seawater were studied in the eutrophicated waters of Mikawa Bay, Japan, during summer 1981. The contents of particulate phosphorus and hot-water extractable intracellular phosphorus displayed remarkable changes associated with phytoplankton blooms caused by wind-induced or upwelling-associated nutrient enrichment from the bottom water layers. Nanoplankton <10 m accounted for much of the particulate phosphorus (70 to 79% in June and July, and 44 to 78% in August and September); the contribution of large-sized phytoplankton >25 m varied from 9 to 49%, the peak values being attained under red-tide conditions. The capacity for phosphorus storage in cells was low in nanoplankton cells, high in large phytoplankton species. Differences in rates of phosphorus storage and growth between nanoplankton and large phytoplankton accounted for fluctuations in particulate phosphorus which were closely associated with fluctuations in phytoplankton blooms in Mikaw Bay.  相似文献   

11.
A model was developed for use in simulating effects of short-term wind-mixing of the water column on estuarine phytoplankton dynamics. Simulation results, using parameter values estimated from field data, exhibited maxima observed in phytoplankton standing crop over a summer in Auke Bay, Alaska. Short-term wind-mixing of the water column can be important in determining the time of occurrence of phytoplankton community productivity pulses in deep estuaries.  相似文献   

12.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

13.
The phytoplankton uptake and release rates for inorganic phosphate, dissolved organic phosphate and polyphosphate were estimated during 5 cruises on the Chesapeake Bay over a 9-month period. Phosphorus in all pools turned over in several minutes to 100 h, and each soluble pool appeared to contain fractions which were metabolically useful to the phytoplankton. Maximal uptake rates (V m ) for orthophosphate ranged from 0.02 to 2.95 μg-at P (1.h)-1 with half saturation constants (K s ) between 0.09 and 1.72 μg-at P l-1. At low soluble reactive phosphorus concentrations, the uptake rate of trace 32P orthophosphate was initially rapid, but declined after 15 to 60 min incubation. The data suggest that the initial uptake phase was dominated by exchange of 32PO4 for 31PO4 in the membrane transport systems whereas the subsequent phase represented the net incorporation of orthophosphate into phytoplankton cells.  相似文献   

14.
The present study was carried out to determine the water quality in terms of physicochemical characteristics and plankton distribution in the coastal waters of Kattumavadi, Palk Bay for a period of one year from April 2002 to March 2003. Air and surface water temperatures varied from 28 degrees C to 32.50 degrees C and from 27.5 to 32.0 degrees C while light extinction coefficient (LEC) varied between 0.95 and 1.85. Salinity ranged from 26.0 to 34.5 per thousand and the pH ranged between 7.95 and 8.35. Variation in dissolved oxygen content was from 4.15 to 7.18 ml(-1), and the particulate organic carbon (POC) content varied between 0.49 and 2.28 mgCl(-1). Concentrations of nutrients viz. nitrate (2.15 to 8.28 microM), nitrite (0.12 to 0.62 microM), inorganic phosphate (1.28 to 2.15 microM) and reactive silicate (5.15 to 12.52 microM) also varied independently. Chlorophyll a content ranged from 0.28 to 1.48 mg m(-3) and the primary productivity, from 4.19 to 16.08 mgCm(-3) hr(-1). The present study recorded a total of 43 species of planktonic diatoms and two species of blue-green algae. Population density of phytoplankton varied from 18,000 to 34,000 cells l(-1). Percentage composition, of the diatoms showed minimum values during the monsoon season and the maximum values during the premonsoon season.  相似文献   

15.
Phytoplankton cycles of lower Saronicos Bay, Aegean Sea, are described on the basis of net samples collected during 1967. The annual cycle is largely due to changes in diatom concentrations (cells/liter). The diatom summer poverty is due mainly to high light intensities, phosphate depletion and extensive grazing. The species succession and diversity have been examined, and the results are discussed.  相似文献   

16.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   

17.
Ammonium regeneration and assimilation in eelgrass (Zostera marina) beds   总被引:4,自引:0,他引:4  
Regeneration and assimilation of ammonium in the water column and in sediments of eelgrass (Zostera marina L.) beds of Izembek Lagoon and Crane Cove, Alaska, USA and Mangoku-Ura, northeastern Japan, were investigated by using a 15N isotope dilution technique. In the water column of Mangoku-Ura, ammonium was regenerated at a rate of 12 nmol l-1 h-1 and assimilated at a rate of 74 nmol l-1 h-1. The ammonium regeneration rate in sediments ranged from 2 to 150 nmol g-1 h-1, and with one exception, exceeded ammonium assimilation in sediments (0.3 to 77 nmol g-1 h-1). The ammonium regeneration in the water column was of little significance for the nitrogen supply to the eelgrass bed ecosystem. Net ammonium production (regeneration minus assimilation) in the sediment of Izembek Laggon met nitrogen demand for eelgrass growth, suggesting that ammonium regeneration in the sediments was very important for the nitrogen cycle in the eelgrass bed ecosystem.  相似文献   

18.
The composition and productivity of four different size-fractions (<20, 20 to 60, 60 to 100, >100 μm) of the phytoplankton of lower Narragansett Bay (USA) were followed over an annual cycle from November, 1972 to October, 1973. Diatoms dominated the population in the winter-spring bloom and in the fall, the summer population was dominated by flagellates. The nannoplankton (<20 μm) were the most important, accounting for 46.6% of the annual biomass as chlorophyll a and 50.8% of the total production. The relative importance of the different fractions showed a marked seasonality. During the winter-spring and fall blooms the netplankton fractions (>20 μm) were the most important. Nannoplankters domnated in the summer. The yearly mean assimilation numbers for the different fractions were not signfficantly different. During the winter-spring bloom, however, the assimilation numbers for the netplankters were significantly higher than those for the nannoplankton fraction. Temperature accounted for most of the variability in assimilation numbers; a marked nutrient stress was observed on only two occasions. Growth rates calculated from 14C uptake and adenosine triphosphate (ATP)-cell carbon were generally quite high; maxima were >1.90 doublings per day during blooms of a flagellate in the summer and of Skeletonema costatum in the fall. The series of short cycles observed in which the dominant species changed were related to changes in the physiological state of the population. Higher growth rates were generally observed at times of peak phytoplankton abundance while lower growth rates were observed between these peaks. The high growth rates and assimilation numbers usually found suggest that the phytoplankton in lower Narragansett Bay was not generally nutrient-limited between November, 1972 and October, 1973. Nutrient regeneration in this shallow estuary, therefore, must be very rapid when in situ nutrient levels are low.  相似文献   

19.
Spatial and temporal variations in nitrogen fixation and denitrification rates were examined between July 1991 and September 1992 in the intertidal regions of Tomales Bay (California, USA). Microbial mat communities inhabited exposed mudflat and vegetated marsh surface sediments. Mudflat and marsh sediments exhibited comparable rates of nitrogen fixation. Denitrification rates were higher in marsh sediments. Nitrogen fixation rates were lowest during January at both sites, whereas highest rates occurred during summer and fall. Denitrification rates were highest during fall and winter months in marsh sediments, while rates in mudflat sediments were highest during summer and fall. In mudflat sediments, nitrogen fixation and denitrification rates, integrated over 24 h, ranged from 6 to 79 mg N m-1 d-1 and 1 to 10 mg N m-2 d-1, respectively. Rates of denitrification represented between 6 and 20% of nitrogen fixation rates during the day, but exceeded or were equivalent to nitrogen fixation rates at night. The highest integrated rates of both nitrogen fixation and denitrification occurred during July, whereas, the highest percent loss occurred during spring when denitrification rates amounted to 20% of nitrogen fixation rates during the day. Over an annual cycle, inputs of fixed N to mudflat communities occurred exclusively during daylight. These results underscore the importance of determining integrated diel rates of both nitrogen fixation and denitrification when constructing N budgets. Using this approach, it was shown that microbial denitrification can represent a significant loss of combined nitrogen from mats on daily as well as monthly time scales.  相似文献   

20.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号