首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This study characterized the changes of nitric oxide (NO) production during the growth of Microcystis aerugrinosa, a cyanobacterium which usually cause cyanobacterial blooms. Results showed a drastic NO release accompanying with cell density and Chl-a content sharp rises when M. aerugrinosa grew from fifth day to sixth day. Moreover, high N:P ratio accelerated the cyanobacterial growth and NO burst. Sodium nitroprusside, an exogenous NO donor, promoted M. aerugrinosa growth with the optimal concentration of 0.1 mg/L. Experiments by supplementing with sodium nitrite and l-arginine demonstrated NO production in M. aerugrinosa cells was mainly through nitrate reductase (NR) pathway while minorly through NO synthase pathway. All these data suggested M. aerugrinosa produced increasing NO during its growth mainly by NR pathway, during which NO positively regulated the growth of M. aerugrinosa.  相似文献   

2.
Abstract

The biological effects of clofibrate (ethyl p‐chlorophenoxy‐isobutyric acid) on the growth and metabolism of the soil‐borne wheat pathogen Fusarium culmorum, were examined.

In mid log phase (16 hr) cultures both phenylalanine uptake and secondary spore production were stimulated at 0.1 μM concentration; the net sterol content was reduced 50% at 0.35 μM; oxygen uptake was stimulated at 0.1 mM; growth was inhibited 50% at 0.1 mM concentration. Both phenylalanine and oxygen uptake were inhibited at 1.0 mM and pyruvate dehydrogenase activity was reduced 50% at 50 mM concentration of clofibrate.

The data indicate that clofibrate affects a number of biological and enzyme systems. The inhibitory effect on the growth of the pathogen suggest a potential use of hypolipidemic agents like clofibrate as an antifungal agent for seed protection.  相似文献   

3.
Lysis of cyanobacteria with volatile organic compounds   总被引:2,自引:0,他引:2  
Ozaki K  Ohta A  Iwata C  Horikawa A  Tsuji K  Ito E  Ikai Y  Harada K 《Chemosphere》2008,71(8):1531-1538
One of bacteria collected from Lake Sagami, Japan, Brevibacillus sp., was found to have a lytic activity of cyanobacteria, but did not produce active compounds. Instead, the co-culturing of Microcystis with the Brevibacillus sp. enhanced the production of two volatile compounds, beta-cyclocitral and 3-methyl-1-butanol, and the former had a characteristic lytic activity. It was confirmed that these volatile compounds were derived from the cyanobacteria themselves. beta-Ionone, geosmin and 2-methylisoborneol derived from cyanobacteria and similar volatile compounds, terpenoids, produced by plants also had a lytic activity. The minimum inhibitory concentration values of the cyanobacterial metabolites were estimated to be higher than those of compounds from plants except for a few compounds. Among them, beta-cyclocitral only produced a characteristic color change of culture broth from green to blue. This color change is similar to the phenomenon observed when a sudden decline in growth of cyanobacteria begins in a natural environment.  相似文献   

4.

Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20–50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.

  相似文献   

5.

In freshwater aquaculture ponds, application of algicidal Bacillus is a promising way in the control of cyanobacterial blooms. To best understand Bacillus algicidal characters and mechanisms in the field, different-sized colonial cyanobacteria were isolated from an aquaculture pond, and the effects of B. subtilis on their growth, colony maintenance, and colony-attached bacterial community composition were investigated. The results showed that B. subtilis could inhibit the growth of colonial cyanobacteria. Bigger-sized colonies isolated from the field could spontaneously disintegrate into smaller-sized colonies in the laboratory. Algicidal B. subtilis could accelerate the disintegration of colonies and decrease colony size. B. subtilis not only decreased the colony-attached bacterial community diversity but also changed its composition. B. subtilis increased the relative abundances of some attached bacterial genera, including Pseudomonas, Shewanella, Bacillus, Shinella, Rhizobium, and Ensifer. These bacteria with algicidal, microcystin-degrading, and flocculating activities might be an important contributor to algicidal effects of B. subtilis on colonial cyanobacteria.

  相似文献   

6.
Abstract

Malathion is an organophosphorus pesticide widely used in agricultural crops, despite its toxicity. In addition, malaoxon occurs by oxidation of malathion being more toxic. The toxic effects of malathion and malaoxon in humans include hepatoxicity, breast cancer, genetic damage and endocrine disruption. The aim of this study involved assessing the effect of malathion commercial grade on Chroococcus sp., and its potential as an alternative to the removal of this pesticide and its transformation product such as malaoxon. We evaluated the effect of malathion at different concentrations (1, 25, 50, 75 and 100?ppm) on the biomass of the cyanobacteria Chroococcus sp. grown in medium BG-11; also, we analyse its ability to degrade both malathion and malaoxon into a temperature of 28?±?2?°C and at pH 6. The results showed that 50?ppm of malathion the cyanobacteria Chroococcus sp. reached the highest removal efficiency of malathion and malaoxon (69 and 65%, respectively); also, the growth rate of Chroococcus sp. increased without inhibiting the production of chlorophyll “a”, this can be explained by the hormesis phenomenon. Therefore, we consider that the cyanobacteria Chroococcus sp. may be a good candidate for bioremediation of aquatic systems contaminated with organophosphorus pesticides such as malathion and its transformation product such as malaoxon.  相似文献   

7.
阳澄湖和滆湖微囊藻毒素分布及其与富营养化因子的关系   总被引:2,自引:0,他引:2  
2013年6—10月进行了阳澄湖和滆湖的水样采集及分析,对水体中胞内和胞外3种微囊藻毒素(MC-LR,MCRR,MC-YR)和TN、TP、Chl-a等富营养化指标在两湖的分布情况及关系进行了研究。结果表明,阳澄湖的微囊藻毒素及富营养化因子浓度在不同点位的差异小,而滆湖从北部到南部呈下降趋势,两湖相比,滆湖的浓度远远高于阳澄湖;富营养化因子影响微囊藻毒素的浓度分布和变化;相关性分析表明MC-LR、MC-RR和MC-YR与CODMn、TN、TP、PO3-4-P、Chl-a分别呈极显著正相关性(P0.01),MC-LR、MC-YR与NH+4-N呈显著负相关(P0.05);逐步回归性分析显示Chl-a是影响3种微囊藻毒素浓度的关键因子,可以通过Chl-a对水体中MCs的浓度进行预测,为微囊藻水华和微囊藻毒素污染的预警提供重要的科学参考。  相似文献   

8.

Arsenic (As) gets accumulated in plants via phosphorous transporters and water channels and interferes with nutrient and water uptake, adversely affecting growth and productivity. Although, Si and AM have been reported to combat arsenic stress, their comparative and interactive roles in ameliorating As V and As III toxicities have not been reported. Study evaluated effects of Si and Rhizophagus irregularis on growth, As uptake and yield under arsenate and arsenite stress in two pigeonpea genotypes (metal tolerant—Pusa 2002 and metal sensitive—Pusa 991). Higher As accumulation and translocation was observed in As III treated roots of Pusa 991 than those of Pusa 2002 when compared with As V. Roots were more negatively affected than shoots which led to a significant decline in nutrient uptake, leaf chlorophylls, and yield, with As III inducing more negative effects. Pusa 2002 established more effective mycorrhizal symbiosis and had higher biomass than Pusa 991. Si was more effective in inducing shoot biomass while AM inoculation significantly improved root biomass. AM enhanced Si uptake in roots and leaves in a genotype dependent manner. Combined application of Si and AM were highly beneficial in improving leaf water status, chlorophyll pigments, biomass, and productivity. Complete amelioration of negative impacts of both concentrations of As V and lower concentration of As III were recorded under +Si +AM in Pusa 2002. Results highlighted great potential of Si in improving growth and productivity of pigeonpea through R. irregularis under As V and As III stresses.

  相似文献   

9.

Nanoplastics are widely distributed in freshwater environments, but few studies have addressed their effects on freshwater algae, especially on harmful algae. In this study, the effects of polystyrene (PS) nanoplastics on Microcystis aeruginosa (M. aeruginosa) growth, as well as microcystin (MC) production and release, were investigated over the whole growth period. The results show that PS nanoplastics caused a dose-dependent inhibitory effect on M. aeruginosa growth and a dose-dependent increase in the aggregation rate peaking at 60.16% and 46.34%, respectively, when the PS nanoplastic concentration was 100 mg/L. This caused significant growth of M. aeruginosa with a specific growth rate up to 0.41 d?1 (50 mg/L PS nanoplastics). After a brief period of rapid growth, the tested algal cells steadily grew. In addition, the increase in PS nanoplastics concentration promoted the production and release of MC. When the PS nanoplastic concentration was 100 mg/L, the content of the intracellular (intra-) and extracellular (extra-) MC increased to 199.1 and 166.5 μg/L, respectively, on day 26, which was 31.4% and 31.1% higher, respectively, than the control. Our results provide insights into the action mechanism of nanoplastics on harmful algae and the potential risks to freshwater environments.

  相似文献   

10.

The high-quality development of agriculture requires not only sustainable growth of agricultural productivity but also green agricultural production. Internet technology has played an essential role in agricultural production and marketing in China over the past decades. This paper estimates provincial agricultural green growth in China from 1997 to 2019 and decomposes it into technological progress (TP) and efficiency changes (EC) based on the Luenberger productivity indicator method. Then an econometric model is employed to analyze the impact of the Internet on the growth of agricultural green productivity and each sub-component, and moderating role of farmer education in such effect. The empirical results indicated that annual average growth rate of agricultural green productivity in China is 1.33% from 1997 to 2019, and technological progress dominates its growth. The development of Internet technology has a significant positive impact on agricultural green productivity and its decomposition. Farmer education has strengthened the effect of Internet technology on agricultural green productivity and its decomposition TP and EC.

  相似文献   

11.

The problem of algal bloom caused by eutrophication has attracted global attention. Many scholars have studied the problem associated with algae bloom, but few have carried out dynamic monitoring, instead focusing on the formation mechanism of cyanobacteria. For our study of the Taihu Lake in China, we used Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat remote sensing image data from 2017 to establish a prediction model. First, we used MODIS data to retrieve the concentration of N, P, and chlorophyll a in water. Then, we applied the analytic hierarchy process (AHP) model to the inversion results to construct the diffusion potential index. Finally, we used C# to compile the cellular automata (CA) model. We found that the distribution of cyanobacteria predicted by our method was consistent with the algal bloom situation of Taihu Lake in 2017. The results showed that the method effectively predicts the dynamic transfer of cyanobacteria from outbreak to diffusion in a short period of time, which can help decision-makers monitor lake health.

  相似文献   

12.

Biodiesel wash water is a contaminating industrial effluent that must be treated prior to disposal. The use of this effluent as a low-cost alternative cultivation medium for microalgae could represent a viable supplementary treatment. We cultivated 11 microalgae species with potential use for biodiesel production to assess their growth capacities in biodiesel industrial washing waters. Only Monoraphidium contortum, Ankistrodesmus sp., Chlorococcum sp., and one unidentified Chlorophyceae species grew effectively in that effluent. M. contortum showed the highest growth capacity and had the second highest fatty acid content (267.9 mg g−1 of DW), predominantly producing palmitic (20.9%), 7,10,13-hexadecatrienoic (14%), oleic (16.2%), linoleic (10.5%), and linolenic acids (23.2%). In the second phase of the experiment, the microalgae were cultivated in biodiesel wash water at 75% of its initial concentration as well as in WC (control) medium. After 21 days of cultivation, 25.8 and 7.2% of the effluent nitrate and phosphate were removed, respectively, and the chemical oxygen demand was diminished by 31.2%. These results suggest the possibility of cultivating biodiesel producing microalgae in industrial wash water effluents.

  相似文献   

13.
Watson SB  Ridal J  Zaitlin B  Lo A 《Chemosphere》2003,51(8):765-773
Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.  相似文献   

14.
Abstract

The objective of this study was to determine the effects of varying nitrogen sources and concentrations upon glutamine synthetase and protease activities in Prevotella ruminicola strain B14. Based on growth response it appears that ammonium chloride or pepticase limited P. ruminicola becomes nitrogen limited when nitrogen concentration is at 0.5 mM. However, when casein was provided as the sole source of nitrogen P. ruminicola becomes nitrogen limited at 2.5 mM. Glutamine synthetase activity was measured from mid‐log phase cells grown in either nitrogen‐limited or non‐limited conditions. No activity was detectable in the non‐limited treatments. However, in the N‐ limited treatments, pepticase had the highest activity (20.76 units), followed by ammonium chloride (18.72 units) and casein (14.42 units). Protease activity assays indicated that nitrogen‐limited cultures had higher proteolytic activity than non‐limited cultures. Moreover, these activities appeared to follow the same response pattern as the previously observed glutamine synthetase activities. The results of this study indicate that P. ruminicola strain B, 4 protease activity may be influenced by nitrogen concentration such that activity increases when nitrogen availability decreases.  相似文献   

15.

Introduction  

Initial geosmin degradation was closely related to water temperature and natural geosmin concentration of sampling environment. Here, for the first time, we evaluated the biodegradation of geosmin by microorganisms in biofilm from biological treatment unit of actual potable water treatment plant.  相似文献   

16.

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice–wheat and rice–maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69–100%) and irrigation (23–27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6–16%), net energy (14–26%), energy ratio (25–33%), and energy productivity (23–34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the “conservative hypothesis,” which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

  相似文献   

17.
This study explored the optimisation of a method of extracting allelochemicals from Pistia stratiotes Linn., identified the optimal dose range for the allelochemicals’ anti-algal effect and investigated their impact on the growth of Microcystis aeruginosa, as well as the production and release of microcystin-LR (MC-LR). Based on measured changes in algal cell density and chlorophyll a (Chl-a) content, the allelochemicals were confirmed to have the strongest anti-algal effect with the lowest half-effect concentration of 65 mg L?1 when they were extracted using ethyl acetate as the extraction solvent, 1:20 g mL?1 as the extraction ratio and 1 h as the extraction time. The allelochemicals extracted from P. stratiotes using this optimal method exhibited the strongest inhibitory effect on the growth of algae when used within a dose range of 60–100 mg L?1; the relative inhibitory ratio reached 50–90 %, and Chl-a content reduced 50–75 % in algae cell cultures within 3–7 days. In addition, the extracted allelochemical compounds demonstrated no significant impact on the extracellular release of MC-LR during the culturing period. The amount of intracellular MC-LR per 106 algal cells increased depending on the increasing dose of allelochemicals from P. stratiotes after 7 days of culturing and maintained stability after 16 days. There was no increase in the total amount of MC-LR in the algal cell culture medium. Therefore, the application of allelochemicals from P. stratiotes to inhibit M. aeruginosa has a high degree of ecological safety and can be adopted in practical applications for treating water subjected to algae blooms because the treatment can effectively inhibit the proliferation of algal cells without increasing the release of cyanotoxin.  相似文献   

18.
The amount of struvite (MgNH4PO4·6H2O) produced by Myxococcus xanthus as well as the culture parameter values (pH, total phosphorus, total Kjeldahl nitrogen) were dependent on the culture medium used. Struvite formation started during the exponential phase and the maximum concentration was observed at the beginning of stationary growth phase. The addition of each medium component to the liquid culture influenced the amount of crystal produced. This amount did not depend on the pH increase during the culture period. The moment of the bacterial growth phase, at which each medium component was added, influenced the struvite formation.  相似文献   

19.
The effect of six glyphosate concentrations on growth rate and aflatoxin B1 (AFB1) production by Aspergillus section Flavi strains under different water activity (aW) on maize-based medium was investigated. In general, the lag phase decreased as glyphosate concentration increased and all the strains showed the same behavior at the different conditions tested. The glyphosate increased significantly the growth of all Aspergillus section Flavi strains in different percentages with respect to control depending on pesticide concentration. At 5.0 and 10 mM this fact was more evident; however significant differences between both concentrations were not observed in most strains. Aflatoxin B1 production did not show noticeable differences among different pesticide concentrations assayed at all aW in both strains. This study has shown that these Aspergillus flavus and A. parasiticus strains are able to grow effectively and produce aflatoxins in high nutrient status media over a range of glyphosate concentrations under different water activity conditions.  相似文献   

20.
Zhang J  Geng J  Ren H  Luo J  Zhang A  Wang X 《Chemosphere》2011,85(8):1325-1330
Phosphorus (P) is a key biological element and limiting nutrient in aquatic environments. Phosphate (+5) is traditionally associated with the P nutrient supply. However, phosphite (+3) has recently generated a great deal of interest, because of the possibility that it is a P source based on recognition of its vital role in the original life of the early earth. This study investigated whether phosphite can be an alternative P source for Microcystis aeruginosa PCC 7806, one of the predominant bloom species in freshwater systems. The results indicated that M. aeruginosa could not utilize phosphite as a sole P-nutrient directly for cell growth at any concentration, but that phosphite could boost cell numbers and chlorophyll a (Chl-a) content as long as phosphate was provided simultaneously. Specifically, Chl-a production increased sharply when 5.44 mg P L−1 phosphite was added to 0.54 mg P L−1 phosphate medium. Analysis of the maximum yield of PSII indicated that phosphite may stimulate the photosynthesis process of cells in phosphate-phosphite medium. In addition, phosphite failed to support cell growth, even though it more readily permeated the cells in P-deficient medium than in P-sufficient medium. Alkaline phosphatase activity (APA) analysis indicated that, unlike organic P, phosphite inhibits the response of cells to deficient P status, especially under P-deprived conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号