首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对尾气中NO浓度高且传统方法脱除NO代价高的问题,研究了锰固载氧化石墨诱导单过硫酸氢钾(PMS)催化氧化并吸收NO方法。通过浸渍法在氧化石墨上负载了Mn3O4制得Mn/GO催化剂,以此为催化剂催化PMS氧化NO。研究了pH、PMS投加量、催化剂投加量以及温度等因素对NO氧化率的影响。结果表明,该系列Mn/GO催化剂可以有效地诱导PMS氧化NO,热处理时间为7 h时催化效果最佳。同时,对Mn/GO(7 h)的FT-IR、XRD、SEM、EDS以及XPS表征可知,Mn3O4是主要的锰氧化物,并成功负载在GO表面。  相似文献   

2.
A series of transition metal oxide catalysts (Zn, Ti, Cu, Ni, Fe and V) supported on Al2O3 and SiO2 were prepared using the incipient wetness impregnation method. Their performances on NO reduction and CO oxidation followed the sequence of TiO2 > CuO/ZnO > CuO > ZnO. TiO2 supported on SiO2 was more active than that on Al2O3, while ZnO had the opposite performances. The activities of CuO/Al2O3 and ZnO/SiO2 were both decreased with the calcination temperature increasing because the sintering and agglomerations of catalysts were occurred at high temperature.  相似文献   

3.
过渡金属氧化物催化氧化NO实验研究   总被引:3,自引:1,他引:2  
采用沉淀法制备出一系列过渡金属氧化物催化剂,在内径为10 mm的固定床反应器中考察其对低浓度NO的催化氧化活性,催化反应活性顺序为:MnCrCoCuFeZn,并考察了以锰为活性组分采用低温固相法、流变相法和浸渍法制备的催化剂催化氧化NO的活性。实验结果表明,采用流变相法和低温固相法制备的锰氧化物催化剂,在反应温度150℃,NO浓度为5×10-4,O2为3%,N2为平衡气,空速51 000 h-1条件下,NO转化率分别为65%和57%;采用浸渍法制备的Mn/TiO2-10%催化剂,在反应温度200℃,空速相同的条件下,NO转化率为47%。  相似文献   

4.
采用溶胶凝胶法制备负载型催化剂MnOx/TiO2和V2O5/TiO2,对比选择MnOx/TiO2催化剂。考察了锰系催化剂的活性组分负载量、焙烧温度及Ce掺杂量对催化氧化苯乙烯的影响,并结合XRD、BET和SEM表征手段对催化剂进行微观分析。结果表明,MnOx/TiO2 对苯乙烯有良好的催化活性,Mn与Ti的摩尔比为0.1,焙烧温度为500℃时,起燃温度T50仅为150℃,当反应温度为254℃时,苯乙烯去除率超过90%。当掺杂Ce后催化剂MnOx-CeO2/TiO2对苯乙烯催化燃烧的起燃温度和完全转化温度均有明显降低,催化剂表面燃烧物颗粒的粒径有所减小,分散均匀,更有利于苯乙烯的催化燃烧处理。  相似文献   

5.
Environmental Science and Pollution Research - Perovskite is an efficient and emerging catalyst for NO oxidation. In this study, BaMnO3 and BaCoO3 perovskite catalysts were synthesized by the...  相似文献   

6.
Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts   总被引:2,自引:0,他引:2  
Wang HC  Chang SH  Hung PC  Hwang JF  Chang MB 《Chemosphere》2008,71(2):388-397
Catalytic oxidation of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) with ozone (catalytic ozonation) over nano-sized iron oxides (denoted as FexOy) was carried out at temperature of 120-180 degrees C. The effects of operating temperature, ozone concentration, space velocity (SV) and water vapor contents on PCDD/F removal and destruction efficiencies via catalytic ozonation were investigated. High activity of the iron oxide catalyst towards PCDD/F decomposition was observed even at low temperatures with the aid of ozone. The PCDD/F removal and destruction efficiencies achieved with FexOy/O3 at 180 degrees C reach 94% and 91%, respectively. In the absence of ozone, the destruction efficiencies of all PCDD/F congeners are below 20% and decrease with increasing chlorination level of PCDD/F congener at lower temperature (120 degrees C). However, in the presence of ozone, the destruction efficiencies of all PCDD/F congeners are over 80% on FexOy/O3 at 180 degrees C. Higher temperature and ozone addition increase the activity of iron oxide for the decomposition of PCDD/Fs. Additionally, in the presence of 5% water vapor, the destruction efficiency of the PCDD/Fs is above 90% even at lower operating temperature (150 degrees C). It indicates that the presence of appropriate amount of water vapor enhances the catalytic activity for the decomposition of gas-phase PCDD/Fs.  相似文献   

7.
以活性炭为载体,采用浸渍法制备了一系列Fe掺杂Mn-Ce/AC催化剂,研究了Fe的添加量、焙烧温度对催化剂低温脱硝活性的影响;采用了XRD、SEM和N2吸附-脱附技术对催化剂进行了表征。结果表明,Fe的添加能有效提高Mn-Ce/AC的低温脱硝活性,当Fe的添加量为Fe/Mn(摩尔比)为0.1时,催化剂比表面积大,活性组分的分散程度较高,催化剂低温脱硝性能最优,添加量大于0.1时,更多的Fe沉积在载体表面,催化剂活性降低。焙烧温度影响负载氧化物的价态和晶体的分散度,在400℃温度下焙烧时,催化剂低温脱硝性能最佳,此时催化剂孔隙结构较优,活性组分的分散程度也较高。  相似文献   

8.
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+, displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80~160 and 200~350 °C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures.

Implications: Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnOx). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.  相似文献   

9.
Wang HC  Liang HS  Chang MB 《Chemosphere》2011,82(8):1090-1095
In this study, we examined the experimental catalytic oxidation of gaseous monochlorobenzene (MCBz) with O3 over Fe2O3 in a packed bed reactor to investigate the feasibility of economical low temperature decomposition at a high space velocity (SV). We investigated the effects of several reaction parameters (temperature, O3 concentration, and SV) on the MCBz oxidation. At 150 °C, the conversion of MCBz over Fe2O3 in the absence of O3 was only 3%; it increased to 91% over Fe2O3 in the presence of 1200 ppm of O3 at a high SV of 83 s−1. A long-term operation study revealed that the conversion of MCBz was stable for more than 96 h. In the steady state, the carbon and chlorine balances were 88% and 86%, respectively. Applying a Langmuir-Hinshelwood kinetic model, we estimated an activation energy of 16.7 kJ mol−1 for MCBz oxidation over Fe2O3 in the presence of O3.  相似文献   

10.
沸石载体催化剂研制及其催化臭氧氧化染料废水的研究   总被引:1,自引:0,他引:1  
以沸石为载体负载不同金属氧化物来制备催化剂,通过试验分析该催化剂催化臭氧氧化染料废水的效果及其影响因素。结果表明:(1)沸石对染料废水的吸附作用很小,总有机碳(TOC)去除率基本维持在3.2%左右,对于后期的试验可以忽略其影响。(2)以沸石作为载体制得的MnO2、Fe2O3、ZnO、CuO负载型催化剂(分别简写为MnO2/沸石、Fe2O3/沸石、ZnO/沸石、CuO/沸石),对臭氧氧化反应均有催化作用,其催化效果依次为MnO2/沸石Fe2O3/沸石ZnO/沸石CuO/沸石。同时,MnO2/沸石的重复使用率高。(3)MnO2/沸石催化臭氧氧化效率及重复使用率均优于以活性炭为载体的MnO2负载型催化剂。(4)臭氧氧化和MnO2/沸石催化臭氧氧化对染料的脱色率基本一致。MnO2/沸石催化臭氧氧化的TOC去除率比臭氧氧化提高较多,对染料废水有很好的处理效果。(5)以沸石为载体制得的负载型催化剂催化臭氧氧化实际染料废水的处理效果较好,具有较高的实用价值。  相似文献   

11.
Different formulations of cobalt oxide (viz. Co3O4 powders, unsintered and sintered pellets, Co3O4 supported on alumina and oxide layers on cobalt metal), have been screened for their ability to catalyse oxidation and to resist deactivation by sulphur. The screening test used was the rate of oxidation of 50 ppm CO in oxygen, with or without addition of 3 ppm dimethylsulphide. From these tests a sintered granular catalyst was chosen to evaluate the performance of cobalt oxide for the destructive oxidation of selected organic compounds in air, representative of malodorous substances occurring in process emissions. The organic compounds (acrolein, n-butyraldehyde, n-butyric acid, n-propylamine, dimethylsulphide, 1,1,1-trichloroethane, phenol and toluene) were tested at realistic concentrations (usually 100 ppm in air) and space velocities (usually 45000 h−1). Decomposition of the malodorous compounds (except dimethylsulphide) was almost complete (~99%) at 225–300°C., depending on odorant tested; complete oxidation required somewhat higher temperatures. Sulphur released in the catalytic oxidation of dimethylsulphide was largely incorporated by the catalyst. Additional studies were made of butyric acid oxidation with respect to catalyst particle size, catalyst life, inlet concentration, and added amounts of water vapour and dimethylsulphide.  相似文献   

12.
高浓度焦化废水湿式氧化铜系催化剂的研制   总被引:1,自引:0,他引:1  
通过共沉淀法制备了铜系催化剂 ,用于催化湿式氧化处理高浓度焦化废水。结果表明 ,铜氧化物催化剂的催化活性明显优于其他过渡金属氧化物 ;优化催化剂的设计和制备方法 ,可有效地改善Cu2 +的溶出问题 ,使该类催化剂具有广阔的应用前景  相似文献   

13.
废水催化湿式氧化稀土金属氧化物催化剂的研制   总被引:1,自引:0,他引:1  
采用共沉淀法制得锰铈复合氧化物催化剂,催化湿式氧化处理高浓度苯酚废水。通过正交实验筛选催化剂制备条件,单因素实验优化制得催化剂。研究了CWAO处理废水条件下的金属离子溶出和催化剂的表征。结果表明,该催化剂在低温低压条件下具有优良的湿式氧化催化活性,且金属离子溶出量低,是一种CWAO处理高浓度有机废水中极具应用前景的新型高效催化剂。  相似文献   

14.
Irfan MF  Goo JH  Kim SD  Hong SC 《Chemosphere》2007,66(1):54-59
The oxidation characteristics of NO over Pt/TiO2 (anatase, rutile) catalysts have been determined in a fixed bed reactor as a function of O2, CO and SO2 concentrations in the presence of 8% water. The conversion of NO to NO2 increases with increasing O2 concentration up to 12% and it levels off. This saturation effect is more pronounced over rutile-Pt/TiO2 (r-Pt/TiO2) than that of anatase-Pt/TiO2 (a-Pt/TiO2). The presence of CO increases NO oxidation significantly and this enhanced effect is more pronounced on a-Pt/TiO2 than that on r-Pt/TiO2 with increasing CO concentration at lower temperatures. The same effect is also observed on the catalysts with different Pt and tungsten oxide (WO3) loadings. With increasing Pt and WO3 loadings on TiO2 support (Pt-WO3/TiO2), formation of NO2 is high even at lower temperatures. The presence of SO2 significantly suppresses the oxidation of NO over both r-Pt/TiO2 and a-Pt/TiO2 catalysts but it is less pronounced due to low stability of sulfate on a-Pt/TiO2.  相似文献   

15.

Co-Fe, Cu-Cr, and Co-Mn mixed oxide catalysts were prepared using a one-pot hard template synthesis method, and their catalytic performance was investigated before and after the rearrangement of the template. To evaluate the structural properties of the catalysts, various analyses were employed, including the BET, XRD, H2-TPR, FE-SEM, EDX, and X-ray digital mapping of the elements. The results indicated that the rearrangement of the catalyst structure had a profound effect on the structural and catalytic properties, so that in all three synthesized catalysts, the specific surface and the reducibility increased significantly, and the crystalline structure and morphology of the catalysts changed remarkably. The specific surface area of the CoFe, CuCr, and CoMn catalysts increased from 3.5, 1.1, and 72.9 m2/g to 151.3, 52.8, and 108.0 m2/g, respectively. These structural changes significantly increased the catalytic performance. The results indicated that the 100% conversion temperature of the CoMn catalyst as the optimal sample after rearrangement was reduced from 250 to 125 °C. Also, the stability of the CoMn catalyst in dry and wet conditions was investigated and the results indicated that the presence of water vapor reduced the activity and stability of the catalyst. The activation energy was also calculated on Co-Mn catalyst (59.5 kJ/mol) and the results confirmed that the most probable mechanism for this reaction was the MVK mechanism.

  相似文献   

16.
The catalytic activity and selectivity of manganese zirconia mixed oxides were evaluated for the oxidation of two common chlorinated pollutants found in waste streams, namely 1,2-dichloroethane (DCE) and trichloroethylene (TCE). Mixed oxides with varying Mn-Zr content were prepared by coprecipitation via nitrates, and subsequent calcination at 600 degrees C for 4 h in air. These catalysts were characterised by means of several techniques such as atomic emission spectrometry, N2 adsorption-desorption, powder X-ray diffraction, temperature-programmed desorption of ammonia, pyridine adsorption followed by diffuse reflectance infrared spectroscopy and temperature-programmed reduction with hydrogen. The active catalytic behaviour of Mn-Zr mixed oxides was ascribed to a substantial surface acidity combined with readily accessible active oxygen species. Hence, the mixed oxide with 40 mol% manganese content was found to be an optimum catalyst for the combustion of both chlorocarbons with a T50 value around 305 and 315 degrees C for DCE and TCE oxidation, respectively. The major oxidation products were carbon dioxide, hydrogen chloride and chlorine. It was observed that the formation of both CO2 and Cl2 was promoted with Mn loading.  相似文献   

17.
三维有序大孔钴锰尖晶石催化剂(3DOM CoMn2O4)以及三维有序大孔镧、铈掺杂的钴锰尖晶石催化剂(3DOM RxCo1-xMn2O4(R=Ce, La))由胶晶模板法成功合成。通过对所得的催化剂在NOx协助下的碳烟催化氧化活性评价,优化了Ce/Co和La/Co的配比。此外,还对目标催化剂进行了XRD、N2吸脱附、Raman、H2-TPR、SEM、XPS等表征。结果表明:3DOM结构增强了催化剂与碳烟颗粒之间的接触,对碳烟氧化等“固-固-气”非均相催化反应具有明显的提升作用。此外,铈和镧的掺杂增大了活性氧物种的浓度,从而增强了钴锰尖晶石催化剂的催化氧化能力。在松散接触工况下,3DOM Ce0.9Co0.1Mn2O4的Tig(起燃温度)和Tm(CO2出口浓度最大时的温度)分别为285 oC和377 oC,3DOM La0.3Co0.7Mn2O4的Tig和Tm分别为287 oC和376 oC。  相似文献   

18.
以SnO2为载体,Au为活性组分,采用真空浸渍法、共沉淀法、沉积 沉淀法制备CO氧化的催化剂,同时还制备双金属体系催化剂Au-Pd/SnO2和Au-Pt/SnO2。用气相色谱对所制备的催化剂进行活性评价,运用DSC、SEM、XRD、BET等对催化剂进行表征。在本实验条件下,载体二氧化锡焙烧温度为500 ℃,催化剂成型温度为350 ℃,金负载量为3%(wt.)时,用沉积-沉淀法制备的Au/SnO2活性最好,在18 ℃,空速为24 000 h-1条件下就能将CO(浓度为4%)完全氧化为CO2;添加铂和钯可提高Au/SnO2对CO的催化活性。  相似文献   

19.
以SnO2为载体,Au为活性组分,采用真空浸渍法、共沉淀法、沉积沉淀法制备CO氧化的催化剂,同时还制备双金属体系催化剂Au-Pd/SnO2和Au-Pt/SnO2。用气相色谱对所制备的催化剂进行活性评价,运用DSC、SEM、XRD、BET等对催化剂进行表征。在本实验条件下,载体二氧化锡焙烧温度为500 ℃,催化剂成型温度为350 ℃,金负载量为3%(wt.)时,用沉积-沉淀法制备的Au/SnO2活性最好,在18 ℃,空速为24 000 h-1条件下就能将CO(浓度为4%)完全氧化为CO2;添加铂和钯可提高Au/SnO2对CO的催化活性。  相似文献   

20.
制备了不同CeO_x负载量的(CeO_x)_n-(FeO_x)_(0.1)-(MnO_x)_(0.4)/TiO_2催化剂(n、0.1、0.4分别为CeO_x、FeO_x、MnO_x与载体TiO_2的摩尔比),用于低温选择性催化还原(SCR)脱硝,并对其进行结构和性能的表征。结果表明,适量负载CeO_x能够显著提高催化剂的低温SCR脱硝催化活性。当n=0.07时,催化剂在160~180℃时的催化活性最高,脱硝效率可以达到99%以上。同时,水蒸气、SO_2体积分数分别小于等于10%、0.02%时,该催化剂有较好的抗水性和抗硫性。表征结果显示,(CeO_x)_(0.07)-(FeO_x)_(0.1)-(MnO_x)_(0.4)/TiO_2催化剂锐钛矿TiO_2的相对结晶度低,耗氢还原峰温度低,并且面积大,表面Lewis酸位上的NH_3稳定。因此,(CeO_x)_(0.07)-(FeO_x)_(0.1)-(MnO_x)_(0.4)/TiO_2催化剂具有良好的低温SCR脱硝活性,并且稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号