首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
对东南沿海平原地区某燃煤电厂不同方位距离的9个采样点进行为期9个月的大气颗粒物采集,以PM2.5、PM10为对象,研究了颗粒物与颗粒物汞的时空分布,探讨了燃煤电厂排放对周边大气颗粒物与颗粒物汞分布的影响.结果表明:①本研究区PM2.5平均浓度为78.10 μg·m-3,其中颗粒物汞平均浓度为294.88 pg·m-3;PM10平均浓度为114.48 μg·m-3,其中颗粒物汞平均浓度为363.41 pg·m-3,均高于海内外众多城市.②冬季颗粒物、碳组分及颗粒物汞的浓度远高于春、夏、秋三季,冬季燃煤量大、逆温等气象因素及远距离污染物传输均造成当地冬季颗粒物累积.③大气颗粒物汞浓度随距电厂距离的增加先增加后降低,最大浓度范围为电厂W-NW方向1.3~2.5 km处.④各采样点均受到多种污染源共同影响,以燃煤尘为主,餐饮油烟、机动车尾气、生物质燃烧和扬尘次之,燃煤电厂对周边区域环境大气可吸入颗粒物主要影响区域为W-NW方向1.3~2.5 km.  相似文献   

2.
基于积尘负荷的西安市铺装道路扬尘排放研究   总被引:1,自引:0,他引:1  
近年来城市颗粒物污染问题日渐突出,严重影响着人们的环境幸福指数和对美好环境的期待.道路扬尘作为城市扬尘的重要组成部分,对颗粒物污染的贡献不容小觑.在此背景下,采用积尘负荷法采集西安市快速路、主干道、次干道、支路等4种类型25条道路的道路扬尘样品,并分析采样速率、采样次数等因素对采样效率的影响.在此基础上,计算得到西安市各类型道路的平均积尘负荷,结合车流量、车重、道路长度,通过《扬尘源颗粒物排放清单技术指南》中的公式计算得到各种类型道路TSP、PM10、PM2.5的排放系数及排放量.结果显示:采样速率为1.0 m2·min-1,采样次数为两次可满足采样要求.不同类型道路积尘顺序为:支路(4.18 g·m-2)>次干道(2.80 g·m-2)>快速路(1.49 g·m-2)>主干路(1.34 g·m-2);道路积尘TSP、PM10、PM2.5的平均排放系数分别为6.066、1.542和0.447 g·km-1.快速路和主干路的扬尘排放系数较小,支路的扬尘排放系数次之,次干路的扬尘排放系数较大.采用Monte Carlo方法对TSP、PM10和PM2.5的排放量进行不确定性分析,在95%的概率分布范围下,三者定量不确定性均为-16.88%~17.96%.  相似文献   

3.
青岛市人为源氨排放清单及分布特征   总被引:2,自引:0,他引:2  
通过调查收集各类人为源氨排放活动水平数据,选取合适的排放因子,建立了青岛市2019年人为源氨排放清单,分析了青岛市人为源氨排放贡献特征及分布特征.结果表明,2019年青岛市人为源氨排放总量为28.33×103 t,排放强度为2.51 t·km-2.其中,畜禽养殖是青岛市最主要的排放源,占全市氨排放总量的比例高达77.80%,其次为农田生态系统和废弃物处理,氨排放量分别占全市总量的7.64%和6.87%.2019年,平度市和莱西市氨排放量较高,分别占青岛市氨排放总量的34.18%和26.23%,而市北区和莱西市排放强度较高,分别达到7.26 t·km-2和4.74 t·km-2.从空间分布上,氨排放量较高的镇街主要分布在青岛市北部和西北部,而排放强度较高的镇街则集中在青岛市市区中部和北部地区.  相似文献   

4.
黄小刚  赵景波  辛未冬 《环境科学》2021,42(7):3107-3117
基于遥感反演数据,研究了2016年长三角地区PM2.5浓度空间分布特征,从气象因素、地形、植被和大气污染物排放清单等方面选取评价因子,以0.25°×0.25°网格为评价单元,利用GAM模型研究了长三角PM2.5空间分布的影响因素及交互效应.结果表明:①长三角PM2.5浓度总体呈北高南低、西高东低的分布态势,但以南北向差异为主.长三角南部PM2.5浓度多低于35 μg·m-3,PM2.5超标零星出现在城镇周围,呈孤岛状分布.北部PM2.5浓度多超过35μg·m-3,PM2.5污染多呈连片状分布.②长三角PM2.5浓度分布具有显著的正的空间自相关性,高高集聚区集中分布在长三角北部,低低集聚区集中分布在南部.③ GAM模型分析表明,地形起伏度、气温和降水量对PM2.5浓度主要呈负向影响;污染物排放量主要呈正向影响;风速<2.5 m·s-1时影响不显著,风速≥2.5 m·s-1后有显著的负向影响.地形起伏度、气温和降水量南高北低是造成长三角PM2.5北高南低的重要原因,风速东高西低是造成长三角PM2.5浓度东西向差异的原因之一.④除地形起伏度-PM2.5排放量外,其余因素两两间的交互项均通过了显著性检验,对PM2.5分布有显著的交互效应.  相似文献   

5.
兰-白城市群主要大气污染物网格化排放清单及来源贡献   总被引:3,自引:3,他引:0  
甘肃兰-白城市群为我国西北地区重要的重工业基地,大气污染物排放总量较大.研究高空间分辨率的污染物排放清单对于区域空气质量预报预警、减排方案模拟研究及大气污染防治等具有重要的科学意义.本文以兰州和白银为主要研究区域,基于研究区域污染源排放及统计年鉴等数据资料,建立了兰(2015年)-白(2016年)城市群7种(类)主要大气污染物网格化排放清单,并对其空间排放特征以及排放源贡献进行了详尽地讨论分析.结果表明,兰-白城市群7种主要污染物年排放量分别为:NOx 2.22×105 t、NH3 4.53×104 t、VOCs 7.74×104 t、CO 5.62×105 t、PM10 4.95×105 t、PM2.5 1.91×105 t和SO2 1.37×105 t.其中CO的排放量最大,NH3的排放量最小.本清单与北大和清华MEIC清单对比结果表明,交通源排放3个清单一致性较高,CO排放总量和其工业源排放与北大和清华MEIC清单排放源相差30%~40%,推测原因主要为清单计算过程中排放因子、分辨率和数据年份的差异.本清单网格化空间分布显示除NH3外的其他6种(类)污染物,排放主要集中在市区,排放源中工业非燃烧过程源均为最大贡献占比,NH3的主要贡献源是氮肥的施用及禽畜排放,其污染分布受耕地分布等因素影响较大.因此,减少工业非燃烧过程源、整合优质高效电力供应、使用清洁能源、严格控制工地扬尘、工业粉尘和做好城区绿化等,能有效地降低兰-白城市群NOx、VOCs、CO、PM10、PM2.5和SO2这6种(类)主要污染物的排放.NH3的减排则主要可从控制氮肥的使用及减少禽畜排放两方面考虑.本研究还利用蒙特卡洛法分析了排放清单的不确定性,NH3的不确定性最大为-31%~30%,CO的不确定性最小为-18%~16%,清单整体可信度较高.  相似文献   

6.
为研究沈阳市冬季PM2.5和水溶性离子的污染特征,使用URG-9000D在线监测系统于2018年冬季对大气颗粒物和气体组分进行连续采样.结果表明,采样期间沈阳市PM2.5的平均质量浓度为80.67 μg·m-3,总水溶性离子质量浓度变化范围为2.68~132.79 μg·m-3.与清洁天相比,污染天NO3-、SO42-和NH4+(SNA)占比明显增加,占到PM2.5的43.7%.静稳天气时SO2短时间内的迅速累积使得沈阳市冬季大气PM2.5有暴发性增长现象.Pearson相关性分析可知,SNA、Cl-与PM2.5之间的相关系数均达0.78以上,表明沈阳市冬季PM2.5的主要贡献组分为SNA和Cl-.PMF源解析表明沈阳市冬季污染物来源主要包括二次反应源、燃煤和生物质燃烧源以及扬尘源.  相似文献   

7.
贺博文  聂赛赛  王帅  冯亚平  姚波  崔建升 《环境科学》2021,42(11):5152-5161
为研究承德市PM2.5中碳质组分的季节变化及污染来源,于2019年1、4、7和10月采集大气PM2.5样品,测定碳质组分浓度.通过有机碳(OC)与元素碳(EC)比值、总碳质气溶胶(TCA)及二次有机碳(SOC)的估算,分析碳质组分的变化特征;结合后向轨迹和主成分分析(PCA)方法,分析污染来源.结果表明,采样期间PM2.5、OC和EC的平均质量浓度分别为(31.26±21.39)、(13.27±8.68)和(2.80±1.95)μg ·m-3.PM2.5的季节变化趋势为:冬季[(47.68±30.37)μg ·m-3]>秋季[(28.72±17.12)μg ·m-3]>春季[(26.59±15.32)μg ·m-3]>夏季[(23.17±8.38)μg ·m-3],与总碳(TC)、OC和EC季节变化趋势一致,冬季(R2=0.85)的OC与EC来源较一致;OC/EC值得出4个季节均受到交通和燃煤源排放的影响,且冬季受烟煤排放影响显著.TCA的平均浓度为(21.38±13.68)μg ·m-3,占PM2.5比例达68.39%,二次转化率(SOC/OC)为:春季(54.09%)>秋季(37.64%)>夏季(32.91%)>冬季(25.43%).后向轨迹模拟结果表明,春季和夏季气团携带的污染物浓度相对较低,秋季污染物的传输通道为西南方向,冬季为西北方向,主成分分析(PCA)表明,承德市PM2.5削减的关键是控制机动车尾气、燃煤和生物质燃烧源的排放.  相似文献   

8.
武汉市2014-2017年大气污染物分布特征及其潜在来源分析   总被引:1,自引:0,他引:1  
利用武汉市2014—2017年大气污染物(SO2、NO2、CO、O3、PM2.5和PM10)和气象要素的观测数据,分析了大气污染物的变化特征及其影响因素.使用HYSPLIT模式计算了影响武汉市的主要气团类型,并利用潜在源区贡献(PSCF)和浓度权重轨迹(CWT)分析方法,揭示了研究期内武汉市不同大气污染物的潜在源区分布及其贡献特性.结果表明,武汉市2014—2017年空气质量逐年好转,SO2、O3、PM2.5和PM10的浓度呈逐年下降的趋势,但NO2和CO的浓度先下降后上升.2017年SO2、O3、PM2.5、PM10、NO2和CO的浓度分别为9.6、50.8、52.7、89.2、47.5 μg·m-3和1.1 mg·m-3,分别比2014年降低了64.3%、23.0%、24.7%、18.8%、3.5%和5.9%.大气污染物存在显著的季节变化和月变化.大气污染物在四个季节中日变化类似,SO2和O3均为单峰型分布,NO2、CO、PM2.5和PM10均为双峰型分布.武汉市空气污染以PM2.5为主,随着污染程度的加剧PM2.5/PM10的值逐渐增大,在空气质量为严重污染时,PM2.5/PM10高达90%,比空气质量为优时高了31.34%.局地气团(45%)和来自山西、陕西和河南一带的西北气团(12.1%)下大气污染物浓度较高.大气污染物的潜在源区贡献(WPSCF)和浓度权重轨迹(WCWT)的较大值主要集中在武汉市本地及其周边地区,局地污染对武汉市大气污染物的贡献较大,但不同大气污染物受到排放源分布和停留时间等影响其WPSCF和WCWT的分布范围不同.  相似文献   

9.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

10.
哈尔滨市秸秆焚烧大气污染负荷估算方法研究   总被引:2,自引:1,他引:1  
本文针对近些年哈尔滨秋末冬初大气污染程度增加的溯源问题,基于静风污染气象及降雪对秸秆焚烧的影响等基本假设,采用箱式模型和优化拟合的方法对秸秆焚烧产生污染物的源强及其负荷进行了估算.通过对2015年和2017年典型时段数据的优化拟合得到降雪前重污染天气下PM10排放源强分别为20.16、21.83 μg·m-2·s-1,CO的排放源强分别为149.32、138.65 mg·m-2·s-1;降雪后重污染天气下PM10排放源强分别为15.98、7.09 μg·m-2·s-1,CO的排放源强分别为122.91、89.21 mg·m-2·s-1.由降雪前后各污染物的源强差得到2015年和2017年秸秆焚烧产生的PM10的排放源强分别为4.18、14.74 μg·m-2·s-1,负荷分别为20.73%、67.52%;CO的排放源强分别为26.41、49.44 mg·m-2·s-1,负荷分别为17.69%、35.66%.本文为相关清单的研究提供了一种客观的校核方法,具有重要的社会、环境及现实意义.  相似文献   

11.
为研究乌鲁木齐市散煤燃烧对大气污染物的贡献情况,根据实地调研收集到的散煤燃烧活动水平数据,利用排放因子法建立2015年乌鲁木齐市散煤燃烧PM2.5、SO2和NOx的排放清单,利用ArcGIS空间分析工具进行空间分布特征分析,使用蒙特卡罗方法进行不确定性分析.结果表明:2015年散煤燃烧排放PM2.5、SO2、NOx分别为1.70×104、4.13×104、2.80×103 t.PM2.5和SO2排放的主要贡献区域为乌鲁木齐县,分别占排放总量的27.35%和26.23%,这是由于乌鲁木齐县社区居民和大棚种植耗煤量较大所致;NOx排放的主要贡献区域为米东区,贡献率高达28.03%,这是因为米东区社区居民所用炉灶为手动炉排层燃炉灶,其排放因子较大所致.空间分布特征表明,污染物主要分布在米东区南部、沙依巴克区北部及乌鲁木齐县中部.不确定性分析表明,村庄、社区、大棚种植、商业和事业单位在95%的置信区间时不确定性分别为-69%~165%、-57%~116%、-68%~171%和-67%~165%.蒙特卡罗预测结果(平均值)高于排放清单的计算结果.研究显示,乌鲁木齐市散煤燃烧对污染物排放贡献较大,并且具有明显的季节性和区域性特征.   相似文献   

12.
太原市居民生活燃煤大气污染物排放清单研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了科学计算居民生活燃煤对大气污染物排放的贡献率,建立了太原市居民生活燃煤的大气污染物排放清单.利用高分辨率遥感卫星影像、DEM(数字高程模型)和GIS(地理信息系统)对太原市平房空间分布及面积进行了解译,得到2016年太原市平原、山区、城乡区域平房面积.对平原农村、山区农村、城中村典型区域进行实地调查,统计不同区域户均平房面积和生活燃煤使用量,估算得到了平原农村、山区农村、城中村的生活燃煤使用量.结合相关文献测算的排放因子,计算太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量.结果表明:2016年太原市有22.8×104户燃煤散烧居民,2016年燃煤消耗量为109.6×104 t,平原和城乡居民是主要的生活燃煤用户也是居民生活燃煤大气污染物的主要排放源;太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量分别为9 666.7、7 518.6、8 110.4、1 753.6、657.6、153 549.6、3 419.5、2 882.5 t;2016年太原市清徐县和太原市城区居民煤炭消耗量合计达97.9×104 t,占全年燃煤总消耗量的88%.研究显示,太原市应加快煤改气、煤改电和集中供热建设,进一步推广清洁能源以期减小居民生活燃煤大气污染.   相似文献   

13.
长沙市人为源大气污染物排放清单及特征研究   总被引:5,自引:1,他引:4  
根据收集的长沙市人为源活动水平数据,建立了该地区2014年1 km×1 km人为源大气污染物排放清单.结果显示,2014年长沙市SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放总量分别为53.5×10~3、78.3×10~3、284.6×10~3、102.3×10~3、42.1×10~3、4.0×10~3、7.2×10~3、64.2×10~3、27.1×10~3t.化石燃料固定燃烧源为最大的SO_2排放贡献源,道路移动源是主要的NO_x贡献源,CO排放主要来自化石燃料固定燃烧源和道路移动源,长沙市VOCs的最大贡献源是溶剂使用源,PM_(10)、PM_(2.5)最主要的排放源是扬尘源,BC最大的排放贡献源为化石燃料固定燃烧源,生物质燃烧源是最大的OC贡献源,NH_3排放主要来源于畜禽养殖和农业施肥.空间分布结果显示,长沙市NH_3的排放在宁乡县、望城区、长沙县、浏阳市分布较多,主要呈现片状分布.其他污染物排放高值区则主要分布在中心城区、工业区及道路分布区域.  相似文献   

14.
北京市民用燃煤烟气中气态污染物排放特征   总被引:9,自引:3,他引:6  
以北京远郊农村居民常用的蜂窝煤、煤球、烟煤散煤为实验用煤,开展燃烧实验.研究了烟气无机污染物排放因子、VOCs释放情况.结果表明在充分燃烧的条件下,蜂窝煤、煤球、烟煤气态污染物SO2排放因子分别为1.50、1.91、1.62kg·t~(-1);NOx排放因子分别为0.420、0.901、2.20 kg·t~(-1);CO排放因子分别为22.4、37.3、87.3 kg·t~(-1).燃烧排放的NOx和CO的排放因子顺序关系为:烟煤煤球蜂窝煤;SO2的排放因子大小顺序分别为:煤球烟煤蜂窝煤.获得了北京市2014年3种民用煤燃烧排放的气态污染物的排放清单,烟煤散煤排放的SO2超过了0.55万t,NOx超过了0.75万t,CO超过了29万t.3种煤质燃烧过程中点火和封火阶段VOCs排放浓度相对较高,各阶段VOCs排放因子为点火阶段最高,封火阶段次之.  相似文献   

15.
武汉市秸秆燃烧VOCs排放估算及管理对策   总被引:1,自引:0,他引:1  
黄碧捷 《环境科学》2013,34(12):4543-4551
秸秆燃烧是我国人为源挥发性有机物(volatile organic compounds,VOCs)排放的重要来源之一,其排放对气候变化和人体健康都有很大影响.对该来源VOCs排放量的可靠估算是在区域或城市范围内进行排放效应分析和污染控制的重要前提.根据2005~2011年武汉市农作物的总产量,采用排放因子分析法估算了武汉市及主要6个农作物产区的秸秆燃烧VOCs的排放量,并分别计算其耕地排放强度(I c)和区域排放强度(I r).结果表明,武汉市2005~2011年年均秸秆燃烧VOCs排放量约为(3 163±139)t,I c和I r分别为(1.52±0.06)t·km-2和(0.37±0.02)t·km-2.粮食类和油料类农作物秸秆燃烧是主要的排放源,需优先控制7大类21种VOCs物质.武汉市分区VOCs排放量从大到小排序依次为黄陂区、新洲区、江夏区、蔡甸区、汉南区、东西湖区,前4个区的排放总量占到武汉市的近九成.江夏区、汉南区、黄陂区和新洲区应作为秸秆燃烧VOCs排放的优先控制区,尤其是能作为全国代表性的江夏区,应引起高度重视.在进行区域或城市范围的秸秆燃烧产生污染物质的生态风险评价时,该污染物的I c和I r都是需要考虑的重要基础数据.最后,提出大力发展农村秸秆资源综合循环经济利用是解决区域或城市范围内秸秆燃烧产生环境问题的可行之径.  相似文献   

16.
辽宁省人为源大气污染物排放清单及特征研究   总被引:2,自引:0,他引:2  
为全面评估辽宁省关键大气污染物排放状况,系统收集和整理全省基础活动水平信息,采用排放因子法建立了该省2012年人为源大气污染物排放清单.结果显示,2012年辽宁省SO_2、NO_x、CO、PM10、PM_(2.5)、BC、OC及NH_3排放总量分别为1434.8×10~3、1632.3×10~3、6682.9×10~3、1529.9×10~3、1087.8×10~3、74.5×10~3、176.1×10~3t及880.4×10~3t.BC和OC最大贡献源为生物质燃烧源,排放集中分布在辽宁中、西部;NH_3主要来自畜禽养殖与化肥施用,排放高值区位于辽宁中部农业畜牧业发达地区;其他污染物主要来自固定燃烧源和工艺过程源,集中分布在辽宁中部城市群以及大连金州区、甘井子区和普兰店区.大连、沈阳是SO_2、NO_x、NH_3和颗粒物主要排放城市,鞍山和本溪由于钢铁行业发达,成为CO排放量最大的城市.基于卫星观测获得的NO_2垂直柱浓度对NO_x排放空间分布进行评估,两者相关性系数为0.57(p0.01).辽宁省级排放清单与国家尺度排放清单在一定程度存在差异,主要原因在于采用的活动水平和污染物控制效率的不同,基于详细本地化污染源信息建立的省级排放清单可以较好地反映实际情况.建议完善点源排放特征信息并加强本地化测试,进一步降低省级排放清单不确定性.  相似文献   

17.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

18.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

19.
本研究利用正定矩阵因子分解模型(PMF)-健康风险评价模型(HMHR)探究了扬州市细颗粒物(PM_(2.5))中重金属污染来源及不同污染源对重金属潜在健康风险值的贡献.结果表明,各重金属全年浓度均值为Pb(64. 4 ng·m~(-3)) Cr(25. 24ng·m~(-3)) As(6. 36 ng·m~(-3)) Ni(5. 36 ng·m~(-3)) Cd(3. 34 ng·m~(-3)) Co(1. 21 ng·m~(-3));各污染源对PM_(2.5)贡献分别为二次源(37. 7%)燃煤源(19. 4%)扬尘(17. 5%)机动车(16. 9%)建筑尘(5. 2%)工业源(3. 4%). As主要源于燃煤、机动车和扬尘; Co主要源于工业源;燃煤源对Pb的浓度贡献较高;工业源对Ni、Cd含量的贡献最高.不同污染源的健康风险依次为扬尘源、燃煤源、机动车、工业源、建筑尘.扬尘源和燃煤源的潜在健康风险较其他污染源为高,与其源谱中重金属元素占比较大且对PM_(2.5)贡献浓度较高有关.  相似文献   

20.
苏州市大气细颗粒物(PM2.5)工业源排放清单   总被引:2,自引:0,他引:2  
通过发放调查表、现场咨询等形式,获得苏州市2012年工业企业基本信息,参照国内外已有研究成果,确定排放因子,并根据实际情况对钢铁行业进行了系数修订,得到苏州市工业源大气细颗粒物排放清单.结果表明:苏州地区工业源PM_(2.5)排放总量约为6.57×10~4t,工艺过程源和固定燃烧源分别占94%和6%;张家港地区贡献率最大,为51%,其次为常熟13.8%;姑苏区贡献率最小,为0.13%;苏州市平均排放强度为10.42 t·km~(-2),张家港排放强度最大,达到了43.57 t·km~(-2),其次为新区12.38 t·km~(-2);钢铁与炼焦、火电、水泥行业是PM_(2.5)的主要贡献者,分别为50%、17%和14%;空间分布显示苏州北部相对细颗粒污染较大,重点企业多集中在张家港、常熟地区,东部污染较少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号