首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

2.
Magnetic cationic hydrogel (MCH) was synthesized, and its removal efficiency and mechanisms in regard to natural organic matter (NOM, represented by humic acid and fulvic acid) from the aqueous environment were studied. The effects of time, adsorbent dosage, initial pH, ionic strength, background ions, and NOM types were also investigated. MCH was characterized and found to have a strong magnetic character, yielding an extra advantage for recycling and reuse. Batch studies showed that the removal of Aldrich humic acid (AHA) by MCH was effective. The main mechanism for the removal of NOM is believed to be due to electrostatic interaction. NOM with larger molecular weight tended to be preferentially removed. Solutions with low pH, high ionic strength, and background electrolytes containing calcium, sulfate and bicarbonate were unfavorable for AHA removal. The adsorption-desorption of MCH was evaluated in three cycles, and demonstrated high regeneration rates.  相似文献   

3.
水中加氯对三氮的氯化反应特性研究   总被引:1,自引:0,他引:1  
含氮化合物水体中进行氯化处理时,会产生化合性有效氯。江苏油田通过对油田含氮化合物水源水进行氯化作用的实验分析,结果表明:液氯对氨氮、亚硝酸盐氮存在明显的氯化作用,而对硝酸盐氮的氯化作用不明显。实验同时还探讨了pH、水温、陈化时间及加氯量对氯化反应的影响。  相似文献   

4.
ABSTRACT: Since nitrogen is a nutrient frequently in short supply in coastal ecosystems, an estimate of the nitrogen input via rain was made for the Georgia coast. Water samples collected in 34 separate storms during a 12 month period were analysed for concentrations of ammonia, nitrate plus nitrite, and dissolved organic nitrogen (DON). The range and average concentration in micromoles of nitrogen per liter was 0.0 to 137 (6.3) for ammonia, 1.0 to 21 (7.9) for nitrate plus nitrite, and 0.0 to 13.6 (4.0) for DON. DON, not usually measured in rain, comprised up to 62% of the total nitrogen content. The annual amount of nitrogen contributed by rain to the coast was about 0.3 g N/m2. This value is a small fraction of the calculated nitrogen requirements of coastal plants. More than half the rain samples had pH values less than the CO2 equilibrium pH of 5.6. Values as low as 4.2 were in the range of pH values reported for acid rain in Europe and the northeastern U.S. Total titratable acidity was measured for 12 summer rainwater samples. The results fox 7 individual storms showed a highly linear relation between hydrogen ion concentration and total acidity. However, the elope of the regression line indicated that increases in acidity were not a result of addition of strong acid alone.  相似文献   

5.
分光光度法测定硝酸盐氮中的干扰因素   总被引:1,自引:0,他引:1  
对酚二磺酸分光光度法测定水样中硝酸盐氮的标准方法进行研究,在不同浓度的氯化物、氨氮和亚硝酸盐氮中加入不同浓度的硝酸盐氮标准溶液进行干扰试验。结果表明:在最佳的试验条件控制下,氯离子对低浓度硝酸盐氮测定产生的负干扰明显大于对高浓度硝酸盐氮产生的负干扰;随着加入的氨氮和氯化物浓度的增加,硝酸盐氮含量的测定结果低于实际值,且逐渐减小;在试验浓度范围内亚硝酸盐氮浓度对硝酸盐氮的测定几乎无影响。  相似文献   

6.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

7.
为了明确氮肥形态对土壤养分流失通量及途径的影响,采用随机区组试验设计,利用模拟径流小区观测的方法,研究在地膜覆盖与不覆盖情况下氮肥形态对坡耕地雨季土壤养分流失通量及途径的影响。研究结果表明:壤中流氮、磷和钾的流失量分别占总径流流失量的71.30%、6.36%和8.85%,说明磷和钾流失的主要途径是地表径流,而氮流失的主要途径是壤中流,地膜覆盖降低酰胺态氮肥和缓控释肥处理氮素流失量,其中酰胺态氮肥处理地膜覆盖较不覆盖壤中流氮流失浓度和径流氮素流失量分别降低40.40%和29.32%。在无覆盖条件下,各处理径流氮素流失顺序表现为:酰胺态氮肥〉铵态氮肥〉缓控释肥〉硝态氮肥,施用硝态氮肥氮素流失量最低,较施用酰胺态氮肥氮素流失少40.86%。在地膜覆盖条件下,各处理径流中氮素流失顺序表现为:铵态氮肥〉酰胺态氮肥〉硝态氮肥〉缓控释肥,施用缓控释肥氮素流失量最低,较施用铵态氮肥氮素流失少59.60%。结果表明在四川紫色丘陵区为了有效控制水土养分流失,在肥料形态的选择上,以无覆盖条件下施用硝态氮肥较好,以地膜覆盖条件下施用缓控释肥较好。  相似文献   

8.
The literature has paid scarce attention to the modeling of the denitrification-anaerobic digestion process in packed bed biofilm tubular reactors used to treat wastewater. The present study obtained a steady-state model for industrial salmon fishery wastewater treatment in a biofilm tubular reactor, including pH as a variable and the effect of biomass on hydrolysis. The axial profile of the reactor components and process efficiency were predicted with deviations below 6%. The optimal operating zone for the process was found at hydraulic retention time (HRT)>1.5d and inlet protein concentration (S(prot,0))<3000 mgTOCL(-1). Based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on HRT. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. Organic matter removal was related with the anaerobic digestion process, while denitrification influenced mostly nitrate and nitrite removal.  相似文献   

9.
ABSTRACT: Accurate data about nutrient concentrations in wastewater treatment plant effluents are needed for river basin water-quality studies. As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the South Platte River Basin, nutrient data were requested from 31 wastewater-treatment plants located in the basin. This article describes the types of nutrient data available from the plants, examines the variability of effluent nutrient concentrations, and discusses methods for estimation of nutrient concentrations where data are lacking. Ammonia was monitored at 88 percent of the plants, nitrite plus nitrate was monitored at 40 percent of the plants, and organic nitrogen and phosphorus were monitored at less than 25 percent of the plants. Median total nitrogen concentrations and median total phosphorus concentrations were small compared to typical literature estimates for wastewater-treatment plants with secondary treatment. Nutrient concentrations in effluent from wastewater-treatment plants varied widely between and within plants. For example, ammonia concentrations varied as much as 5 mg/L during a day, as much as 10 mg/L from day to day, and as much as 30 mg/L from summer to winter within a plant. In the South Platte River Basin, estimates of median annual ammonia and nitrite plus nitrate concentrations can be improved based on plant processes; and nitrite plus nitrate and organic nitrogen concentrations can be estimated based on ammonia concentrations. However, to avoid large estimation errors, more complete nutrient data from wastewater-treatment plants are needed for integration into river basin water quality studies. The paucity of data hinders attempts to evaluate the relative importance of point source and nonpoint source nutrient loadings to rivers.  相似文献   

10.
The zinc binding characteristics of natural organic matter (NOM) from several representative surface waters were studied and compared. NOM samples were concentrated by reverse osmosis. The samples were treated in the laboratory to remove trace metals. Square wave anodic stripping voltammetry (SWASV) was used to study zinc complexing properties of those NOM samples at fixed pH, ionic strength, and dissolved organic carbon (DOC) concentrations. Experimental data were compared to the predictions from the Windermere Humic Aqueous Model (WHAM) Version VI. At the same pH, ionic strength, and temperature, the zinc titration curves for NOM samples from different surface water sources tested in our study almost overlapped each other, indicating similarity in zinc binding properties of the NOM. A discrete two-site model gave good fits to our experimental titration data. Non-linear fitting by FITEQL 4.0 shows that the conditional zinc binding constants at the same pH are similar for NOM from different sources, indicating that zinc complexation characteristics of the NOM used in our study do not depend on their origin and one set of binding parameters can be used to represent Zn-NOM complexation for NOM samples from those different surface water sources representing geographically diverse locations. In addition, the total ligand concentrations (L(1,T), L(2,T), and L(T)) of all NOM show no observable gradation with increasing pH (L(1,T)=2.06+/-0.80 mmol/g carbon; L(2,T)=0.12+/-0.04 mmol/g carbon; L(T)=2.18+/-0.78 mmol/g carbon), while the conditional binding constants of zinc by NOM (logK(ZnL)(c)) show a linear increase with increasing pH(logK(1)(c)(pH=6.0)=4.69+/-0.25; logK(1)(c)(pH=7.0)=4.94+/-0.10; logK(1)(c)(pH=8.0)=5.25+/-0.006; logK(2)(c)(pH=6.0)=6.29+/-0.13; logK(2)(c)(pH=7.0)=6.55+/-0.08; logK(2)(c)(pH=8.0)=6.86+/-0.023) with a slope of ca. 0.28, indicating the zinc-NOM complexes become more stable at higher pH. The WHAM VI predicted free zinc ion activities at high zinc concentrations agree with our experimental results at pH 6.0, 7.0, and 8.0. However, the zinc binding of these NOM samples is over estimated by WHAM VI at zinc concentrations below 10(-6) M at pH 8.0.  相似文献   

11.
ABSTRACT: Lake Evergreen was investigated during the time of filling and thereafter for the change of water chemistry at the mud-water interface. The results show that aging or maturing occurs at the nascent stage of the impoundment history. There are many factors affecting concentration of chemical constituents at the interface. There are hydrologic changes such as wind and wave action, or water circulation which can influence all chemical parameters. There is also biological activity, which may involve changes in concentrations of silica, phosphate, alkalinity, pH, ammonium, Kjeldahl nitrogen, etc. An associated effect is the reduction of oxidation-reduction potential which in turn affects the concentration of manganese, etc. All these changes occur primarily in autumn. In late spring to summer, there are changes of nitrite and nitrate accompanied by changes in dissolved oxygen. A water chemistry model at the interface is illustrated.  相似文献   

12.
ABSTRACT: Rainfall is a significant source of some constituents, particularly nitrogen species, in storm runoff from urban catchments. Median contributions of rainfall to storm runoff loads of 12 constituents from 31 urban catchments, representing eight geographic locations within the United States, ranged from 2 percent for suspended solids to 74 percent for total nitrite plus nitrate nitrogen. The median contribution of total nitrogen in rainfall to runoff loads was 41 percent. Median contributions of total-recoverable lead in rainfall to runoff loads varied by as much as an order of magnitude between catchments in the same geographic location. This indicates that average estimates of rainfall contributions to constituent loading in storm runoff may not be suitable in studies requiring accurate constituent mass-balance computations.  相似文献   

13.
ABSTRACT: Oxidized nitrogen (nitrite + nitrate N) concentrations were measured from bulk precipitation, bulk through-fall, and streamflow in a 7.86 hectare forested watershed in southeastern Oklahoma during the wet season from March through June 1983. Oxidized nitrogen inputs comparable to results of other studies were recorded during the 19 rainstorms sampled. Oxidized nitrogen concentrations appeared to increase after rainfall interacted with the pine and hardwood canopies and were inversely related to both rainfall and through-fall depth. Oxidized N concentrations in streamflow were greatest during the rising limb of storm flow with subsequent decreases during the falling limb of storm hydrographs and lowest during base flow. The oxidized N inputs from bulk precipitation were considerably greater than outputs from streamflow resulting in a net retention of oxidized nitrogen within the watershed during the study period.  相似文献   

14.
Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.  相似文献   

15.
ABSTRACT: The sources and distribution of nutrients in the Charlotte Harbor estuarine system were evaluated using nutrient dilution curve models. Except for ammonia, nutrient concentrations were highest and most variable in the rivers, and generally decreased with increasing salinity. Observed and theoretical dilution curves for phosphorus were generally in close agreement, which suggests conservative behavior. Phosphorus concentrations sagged below a straight line because phosphorus-rich water from the upper Peace River basin was diluted by tributaries in the lower basin. The concentrations of dissolved silica appeared to be conservative on some occasions. On other occasions, dissolved silica appeared to be removed at low salimties or released at higher salinities. Concentrations of ammonia were highly variable along the salinity gradient, presumably because of variations in ammonia regeneration and uptake. Concentrations of nitrite plus nitrate were well below conservative dilution curves, probably due to phy-toplankton uptake. At salinities greater than 20%, nitrite plus nitrate concentrations were usually at or below the detection limit and may limit phytoplankton productivity. Projected increased nitrogen loadings from urban development in the basin would favor undesirable increases in phytoplankton and benthic algal growth in waters where sufficient light is available.  相似文献   

16.
ABSTRACT: The Central Nebraska Basins is one of 60 study units in the National Water-Quality Assessment Program of the U.S. Geological Survey. The study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Agriculture is the predominant land use in the study unit, with only eight urbanized communities exceeding a population of 10,000. Water samples were collected from selected streams in the study unit during 1993–1995. The data were used to assess the distribution of nitrogen compounds and phosphorus in the streams and to relate the concentrations of these constituents to environmental settings. This article focuses on dissolved nitrate and orthophosphate. Dissolved nitrate concentrations were highest (90th percentiles were less than 7.0 milligrams per liter as nitrogen) in areas with extensive cropland and pasture, where chemical fertilizers are intensively applied. Synoptic measurements conducted in March and August 1994 indicate that relatively little residual fertilizer, as nitrate, applied during a single crop-growing season enters streams. Dissolved nitrate concentrations showed a seasonal pattern, being highest during winter months and lowest during the late spring and summer. Dissolved orthophosphate concentrations tended to be low across the study unit, 90 percent of all analyses did not exceed 1.7 milligrams per liter as phosphorus.  相似文献   

17.
ABSTRACT: Nine surface water‐quality variables were analyzed for trend at 180 Virginia locations over the 1978 to 1995 period. Median values and seasonal Kendall's tau, a trend indicator statistic, were generated for dissolved oxygen saturation (DO), biochemical oxygen demand (BOD), pH (PH), total residue (TR), nonfilterable residue (NFR), nitrate‐nitrite nitrogen (NN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and fecal coliform (FC) at each location. Each location was assigned to one of four physiographic regions, and mean state and regional medians and taus were calculated. Widespread BOD and NFR improvements were detected and FC improvements occurred in the state's western regions. TR and TKN exhibited predominantly increasing trends at locations throughout the state. BOD, TKN, NFR, and TR medians were higher at coastal locations than in other regions. NN, TKN, and TR exhibited predominantly increasing trends in regions with high median concentrations, while declining trends predominated in regions with relatively high BOD, FC, and NFR medians. Appalachian locations exhibited the greatest regional water‐quality improvements for BOD, FC, NFR, and TKN. Factors responsible for regional differences appear to include geology, land use, and landscape features; these factors vary regionally.  相似文献   

18.
The inorganic anion pollution of the New Calabar River surface water was investigated. Results showed seasonal variations in the inorganic anion levels. Water parameters such as sulfite, nitrate, phosphate, and alkalinity showed significantly higher values in the rainy season than in the dry season. Dissolved oxygen, pH, sulfide, sulfate, ammonia, and nitrite showed no significant differences between their rainy and dry season levels. Upstream-downstream changes were shown by conductivity, total dissolved solids, chloride, salinity, and temperature. Exceptions occurred in the nitrite levels, where the effect was minimal. Although the concentrations of some anions analyzed fell within internationally acceptable limits, the New Calabar River water is, in the main, polluted with inorganic anions and may be unacceptable for potable and industrial uses without treatment.  相似文献   

19.
Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity.  相似文献   

20.
高效的反硝化菌可实现对水体NO3--N、NO2--N的有效去除,将其应用在深度脱氮中可达到快速脱氮的目的.通过将环境筛选得到的DM13菌株固定在巴比伦、火山石、沸石、生物球4种生物填料上,形成反硝化菌固定化生物填料,考察它们对模拟生活污水的深度脱氮能力.结果表明,填料填充量为10%的条件下,空白组、巴比伦组、火山石组、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号