首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   

2.
Laboratory and field investigations have clearly demonstrated the important role of reduced iron (Fe(II)) in reductive transformations of first-row transition metal species. However, interactions of Fe(II) and copper (Cu) are not clearly understood. This study examined the reduction of Cu(II) by Fe(II) in stirred-batch experiments at pH 5.2 and 5.5 as influenced by chloride (Cl-) concentration (0.002-0.1 M), initial metal concentration (0.1-9.1 mM), and reaction time (1-60 min) under anoxic conditions. Reduction of Cu(II) to Cu(I) by dissolved Fe(II) was rapid under all experimental conditions and the stability of the products explains the driving force for the redox reaction. Under conditions of low [Cl-] and high initial metal concentration, >40% of total Cu and Fe were removed from solution after 1 min, which accompanied formation of a brownish-red precipitate. X-ray diffraction (XRD) patterns of the precipitates revealed the presence of cuprite (Cu2O), a Cu(I) mineral, based on d-spacings located at 0.248, 0.215, 0.151, and 0.129 nm. Fourier transform infrared (FTIR) spectroscopy corroborated XRD data for the presence of Cu2O, with features located at 518, 625, and 698 cm(-1). Increasing [Cl-] stabilized the dissolved Cu(I) product against Cu2O precipitation and resulted in more Fe precipitated from solution (relative to Cu) that appears to be present as poorly crystalline lepidocrocite (gamma-FeOOH). This process may be important in anoxic soil environments, where dissolved Fe(II) levels can accumulate.  相似文献   

3.
Phosphorus release from stream sediments into water could increase P loads leaving agricultural watersheds and contribute to lag-time between implementation of best management practices and improvement in water quality. Improved understanding of P release from stream sediments can assist in setting water quality goals and designing stream monitoring programs. The objective of this study was to estimate the relative potential of sediments and soils to release P to stream water in two agricultural watersheds. Stream sediments were collected from banks, pools, riffles, and depositional features. Soils were sampled from wheat, row crop, pasture, and manure-amended fields. Sediments and soils were analyzed for equilibrium P concentration at zero net P sorption (EPC0), maximum P adsorption capacity (P(max)), anion exchange extractable P (P(lab)), and degree of P saturation. Dissolved reactive P (DRP) of stream water was monitored. Stream sediment EPC0 was similar to or less than EPC0 from field soils; however, P(lab) of stream sediments was three times less than field soils. Sediments were sandy and had low P(max) due to low oxalate-extractable Fe and Al, which could be explained by stream geomorphology. Manure-amended fields had the highest EPC0 and P(lab) due to continued inputs of manure-based P; however, conventionally fertilized fields also represented an important P source due to their vast extent. Stream water DRP was similar to EPC0 of sediments during base flow and similar to EPC0 of field soils during storm flow. These results indicate that sediments in these streams are a relatively minor P source.  相似文献   

4.
Increasing demands on freshwater and challenges in disposal of wastewaters encourage their use for irrigation. The study evaluated the effects of irrigation of signal grass (Urochloa decumbens) with sludgewater on leaching, uptake and retention of a range of elements in two contrasting soils in columns. The grass was grown on a sandy loam and a clay soil packed in plastic columns and irrigated for 119 days with either undiluted, diluted sludgewater or tap water. The sludgewater had a pH of 6.9 and high aluminum (Al), manganese (Mn), iron (Fe), and boron (B). Analyses were conducted on leachates, above-ground plant biomass (two harvests), and soils at the end of the experiment. Sludgewater treatments increased grass biomass yield and uptake of nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) in both soils with a greater nutrient uptake from the clay than the sandy loam. The application of sludgewater increased Mn and reduced P (sandy loam only) in the leachate with no effects on Al, Fe, or B. Uptake of Al, Fe, and B was increased by sludgewater application. Even when diluted, the sludgewater increased extractable Mn, particularly in the clay soil. The findings showed that irrigation of the soils with sludgewater increased Mn and B concentrations and uptake by signal grass, with no negative effects on biomass production. Leaching and accumulation in the soils of toxic elements were minimal in the short term. Sludgewater can therefore be used to grow signal grass in both soils although these effects need to be evaluated under field conditions.  相似文献   

5.
The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of soils and ground waters worldwide. To help alleviate such environmental contamination, we investigated a coupled abiotic-biotic treatment scheme for remediating TNT-contaminated soil in slurry solutions. Two types of soil were used (sandy and silt loam) to simulate different soils that might be found at actual sites. These soils were subsequently contaminated with 5000 mg kg(-1) TNT. Mineralization of TNT was initially optimized for minimum reactant use (Fe(3+) and H(2)O(2)) and maximum soil slurry percentage (percent solids) using modified Fenton reactions conducted in the absence of light followed by the addition of an uncharacterized aerobic biomass. Greater than 97% TNT degradation was observed under optimum reaction conditions for both soils. Using two optimum reactant concentrations for each soil, coupled abiotic-biotic reactions showed an increase in TNT mineralization, from 41 to 73% and 34 to 64% in the sandy soil (10 and 20% slurry, respectively, 1470 mM H(2)O(2)), and increases from 12 to 23% and 13 to 28% in the silt loam soil (5% slurry, 294 and 1470 mM H(2)O(2), respectively). These results show promise in the use of combined abiotic-biotic treatment processes for soils contaminated with high concentrations of TNT.  相似文献   

6.
To reduce losses from agricultural soils to surface water, mitigation options have to be implemented as a local scale. For a cost-effective implementation of these measures, an instrument to identify critical areas for P leaching is indispensable. In many countries, P-index methods are used to identify areas as risk for P losses to surface water. In flat areas, where losses by leaching are dominant, these methods have their limitations because leaching is often not described in detail, PLEASE, is a simple mechanistic model designed to stimulate P Losses by leaching at the field scale using a limited amount of local field data. In this study, PLEASE, was applied to 17 lowland sites in Denmark and 14 lowland sites in the Netherlands. Results show that the simple model simulated measured fluxes and concentrations in water from pipe drains, suction cups, and groundwater quite well. The modeling efficiency ranged from 0.92 for modeling total-P fluxes to 0.36 fr modeling concentrations in groundwater. Poor results were obtained for heavy clay soils and eutrophic peat soils, where fluxes and concentration were strongly underestimated by the model. The poot performance for the heavy clay soil can be explained by the transport of P through macropores to the drain pipes and the underestimation of overland flow on this heavy-textured soil. In the eutrophic peat soils, fluxes were underestimated due to the release of P from deep soil layers.  相似文献   

7.
Detoxification of Cr(VI) through reduction has been considered an effective method for reclaiming Cr-contaminated soil, sediment, and waste water. Organic matter is widely distributed in soil and aquatic systems; however, low Cr(VI) reduction rates inhibit the adoption of Cr reduction technologies by industry. Scientists have been aware of Cr(VI) reduction catalyzed by soil minerals; however, most of the studies focused on using semiconductors as catalysts with UV irradiation to accelerate the redox reactions. The objective of this study was to evaluate the rates of Cr(VI) reduction by fluorescence light in the presence of organic materials with or without specific soil minerals. Experimental results showed that dissolved organic compounds reduced Cr(VI) slowly under laboratory light; however, Cr(VI) reduction was greatly enhanced when growth chamber light was applied. Low photon flux (i.e., laboratory light) only enhanced Cr(VI) reduction by organics when Fe(III) was also present, because the Fe(II)-Fe(III) redox couple accelerated electron transfer and decreased electrostatic repulsion between reactants. Laboratory light was required to initiate Cr(VI) reduction catalyzed by TiO2; nonetheless, light-catalyzed Cr(VI) reduction by smectite and ferrihydrite could occur only when greater light energy was provided with a growth chamber light. Our results suggest a potential pathway for Cr(VI) reduction using naturally occurring organic compounds and colloids in acidic water systems or in surface soils when light is available.  相似文献   

8.
Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts.  相似文献   

9.
The speciation and distribution of Co in soils is poorly understood. This study was conducted using x-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble cobalt in the +2 oxidation state (Co[II]) aging, submergence-dried cycling, and the presence of in vivo rice roots on the speciation and distribution of added Co(II) in soils. In the aging and submerged-dried cycling studies, Co was found to be associated with Mn oxide fraction (23 to 100% of total Co) and Fe oxide fractions (0 to 77% of total Co) of the soils as either Co(II) species or a mixed Co(II), and Co in the +3 oxidation state (Co[III]) species. The surface speciation of Co in the Mn oxide fraction suggests an innersphere complex was present and the speciation of Co in the Fe oxide fraction was an innersphere surface complex. The in vivo root box experiments showed similar Co speciation in the Mn oxide fraction (13 to 76% of total Co) as the aging and submerged-dried cycling studies. However, the Fe oxide fraction of the soil was unimportant in Co retention. A significant amount (24 to 87% of total Co) of the Co in root box treatments was identified as a Co precipitate. The importance of this finding is that in the presence of rice roots, the Co is redistributed to a Co precipitate. This work confirmed earlier macroscopic work that Mn oxides are important in the sequestration of Co in soils and the influence of roots needs to be taken into account when addressing Co speciation. The information gained from this study will be used to improve models to predict the lability and hence the availability of Co in terrestrial environments.  相似文献   

10.
Much of the phosphorus (P) from erosive soils is transported to water bodies together with eroded soil. Studies clarifying the impact of soil erosion on eutrophication have sought largely to quantify the reserves of P in soil particles that can be desorbed in different types of receiving waters. Aquatic microbiology has revealed that the cycling of P is coupled to the availability of common electron acceptors, Fe oxides and SO?, through anaerobic mineralization in sediments. Eroded soil is also rich in Fe oxides, and their effect on the coupled cycling of C, Fe, S, and P has been neglected in eutrophication research. Soil erosion, and its control, should therefore be studied by considering not only the processes occurring in the water phase but also those taking place after the soil particles have settled to the bottom. We propose that in SO?-rich systems, Fe oxides transported by eroded soil may promote Fe cycling, inhibit microbial SO? reduction and maintain the ability of sediment to retain P. We discuss the mechanisms through which eroded soil may affect benthic mineralization processes and the manner in which soil erosion may contribute to or counteract eutrophication.  相似文献   

11.
Phosphorus dissolution often increases as soils become more reduced, but the mechanisms are not fully understood. The objectives of this research were to determine rates and mechanisms of P dissolution during microbial reduction of a surface soil from the North Carolina Coastal Plain. Duplicate suspensions of silt + clay fractions from a Cape Fear sandy clay loam (fine, mixed, semiactive, thermic Typic Umbraquult) were reduced in a continuously stirred redox reactor for 40 d. We studied the effects of three treatments on P dissolution: (i) 2 g dextrose kg(-1) solids added as a microbial carbon source at time 0 d; (ii) 2 g dextrose kg(-1) solids split into three additions at 0, 12, and 26 d; and (iii) no added dextrose. After 40 d of reduction, concentrations of dissolved reactive phosphorus (DRP) were similar for all treatments and increased up to sevenfold from 1.5 to 10 mg L(-1). The initial rate of reduction and dissolution of DRP was significantly greater for the 0-d treatment. A linear relationship (R(2) = 0.79) was found between DRP and dissolved organic carbon (DOC). Dissolved Fe and Al and pH increased, suggesting the formation of aqueous Fe- and Al-organic matter complexes. Separate batch experiments were performed to study the effects of increasing pH and citrate additions on PO(4) dissolution under aerobic conditions. Increasing additions of citrate increased concentrations of DRP, Fe, and Al, while increasing pH had no effect. Results indicated that increased dissolved organic matter (DOM) during soil reduction contributed to the increase in DRP, perhaps by competitive adsorption or formation of aqueous ternary DOM-Fe-PO(4) or DOM-Al-PO(4) complexes.  相似文献   

12.
Due to geochemical processes, peat soils often have elevated concentrations of trace elements, which are gradually released following drainage for agriculture. Our objectives were to use incubation temperatures to vary microbial activity in two metalliferous peats (M7 acidic peat and M3 neutral peat) from the Elba, New York region, and to use periodic leaching to assess the extent of trace element release from these soils. Dried soils were mixed with glass beads to maintain aeration, moistened, and incubated at 4, 16, 28, and 37 degrees C in 10-cm-diameter x 8-cm-tall columns. Five incubation-leaching cycles were performed, each consisting of 7.3 d of incubation (28 d for the final cycle) followed by 16 h of leaching with synthetic acid rain at 2.5 mm h(-1). Microbial activity was determined initially and after the final leaching by measuring C mineralization following glucose stimulation. Cumulative respiration results were ranked 28 > 16 > 4 > 37 degrees C, with M7 acidic peat respiration values greater than M3 neutral peat at each temperature. Initial leachate pH levels were between 2 and 4, with acidification less pronounced and shorter-lived for the M3 peat. Leachate S, dissolved organic carbon (DOC), NO3-N, and trace elements declined with successive leachings (rebounding slightly in the final M3 leachate), with concentrations typically greater in the M7 leachate. Elemental losses followed the same general ranking (28 > 16 > 4 > 37 degrees C); losses at 28 degrees C were 15 to 22% for As, Cd, Ni, and Zn from the M7 peat; losses from M3 were comparable only for Cu (1%) and Ni (19%). The correlation of respiration with S, DOC, and trace elements losses indicates that microbial processes mediated the release of trace elements in both peat soils. Neutral M3 peat pH levels limited losses of most analytes.  相似文献   

13.
Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.  相似文献   

14.
Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.  相似文献   

15.
Copper phytotoxicity in soils is difficult to assess because Cu accumulates at and damages roots, and is not readily transferred to shoots. Soil chemical properties strongly influence Cu speciation, so that total soil Cu alone is not a broadly useful indicator of potential toxicity to plants. The present study measured free Cu2+ activity in Cu-enriched peat soils using the ion selective electrode. The soil Cu2+ activity was related to the severity of phytotoxicity as measured by several indicators in a maize (Zea mays L.) bioassay, including leaf chlorosis, root stunting, and reduced shoot growth and Fe concentration. A soil Cu2+ activity of 10(-7.0) to 10(-7.5), corresponding to total Cu of about 275 mg/kg in the peat soil, caused phytotoxicity in maize seedlings. It is proposed that Cu2+ activity is more directly related to phytotoxic effects than other soil tests, such as extractions with strong acids or chelating agents, because it is the free Cu2+ in soil solution that has the most direct toxic effects on roots. There was very limited uptake of Cu into maize shoots, and even when Cu2+ activity and total soil Cu were raised into the extreme toxicity range of 10(-5) and 4,000 mg/ kg, respectively, shoot Cu remained less than 35 mg/kg. These results indicate the inadequacy of the USEPA risk assessment of potential for Cu toxicity to crops amended with sewage sludge, which assumed a no-effect level of maize shoot Cu of 40 mg/kg.  相似文献   

16.
A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.  相似文献   

17.
Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size.  相似文献   

18.
The efficiency of rhizobial inoculants produced in wastewater sludge used as a growth medium and as a carrier was compared with that of inoculants produced in yeast mannitol broth (YMB) medium and by using peat as a carrier. Alfalfa (Medicago sativa L.) plants were inoculated with solid and liquid Sinorhizobium meliloti inoculants and grown in pots containing two soil types (Kamouraska clay soil and Saint-André sandy soil). The effect of various levels of sludge amendment (60 and 120 kg N/ha) and nitrogen fertilizer (60 kg N/ ha) was also studied. The sludge-based inoculants showed the same symbiotic efficiency (nodulation and plant yield) as YMB-based inoculants. The inoculation increased the nodulation indexes from 4-6 to 8-12, and the rhizobial number from 10(3) (uninoculated soils) to 10(6)-10(7) cells/g in inoculated soils. However, the shoot dry weights and the nitrogen contents were not increased significantly by the inoculation. Applying sludge as an amendment enhanced the rhizobial number in soils from 10(3) to 10(4) cells/g and improved significantly the plant growth (shoot dry weights and nitrogen contents). This improvement increased with sludge rate and with the cut (three cuts). Compared with sludge, N fertilizer gave lower plant yields. The nodulation was not affected by sludge and N-fertilizer application. The texture and physico-chemical properties of soil were found to affect the yield and nitrogen content of the plants. In this study, macroelements and heavy metals were at acceptable levels and were not considered to be negative factors.  相似文献   

19.
The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is being considered for use as a munition, but its environmental fate and impact are unknown. The present study consisted of two main elements. First, sorption-desorption data were measured with soils and minerals to evaluate the respective contributions of organic matter and minerals to CL-20 immobilization. Second, since CL-20 hydrolyzes at a pH of >7, the effect of sorption on CL-20 degradation was examined in alkaline soils. Sorption-desorption isotherms measured using five slightly acidic soils (5.1 < pH < 6.9) containing various amounts of total organic carbon (TOC) revealed a nonlinear sorption that increased with TOC [K(d) (0.33% TOC) = 2.4 L kg(-1); K(d) (20% TOC) = 311 L kg(-1)]. Sorption to minerals (Fe(2)O(3), silica, kaolinite, montmorillonite, illite) was very low (0 < K(d) < 0.6 L kg(-1)), suggesting that mineral phases do not contribute significantly to CL-20 sorption. Degradation of CL-20 in sterile soils having different pH values increased as follows: sandy agricultural topsoil from Varennes, QC, Canada (VT) (pH = 5.6; K(d) = 15 L kg(-1); 8% loss) < clay soil from St. Sulpice, QC, Canada (CSS) (pH = 8.1; K(d) = 1 L kg(-1); 82% loss) < sandy soil provided by Agriculture Canada (SAC) (pH = 8.1, K(d) = approximately 0 L kg(-1); 100% loss). The faster degradation in SAC soil compared with CSS soil was attributed to the absence of sorption in the former. In summary, CL-20 is highly immobilized by soils rich in organic matter. Although sorption retards abiotic degradation, CL-20 still decomposes in soils where pH is >7.5, suggesting that it will not persist in even slightly alkaline soils.  相似文献   

20.
The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation of the P sorption capacity. This indicates that leaching of dissolved P might be a more widespread environmental problem in areas with P-saturated sandy soils than leaching of P(coll).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号