首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO(3)-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO(3)-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha(-1) yr(-1). Percolate was collected with zero-tension lysimeters. Flow-weighted NO(3)-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L(-1) for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO(3)-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO(3)-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO(3)-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.  相似文献   

2.
High N fertilizer and irrigation amounts applied to potato (Solanum tuberosum L.) on coarse-textured soils often result in nitrate (NO3) leaching and low recovery of applied fertilizer N. This 3-yr study compared the effects of two rates (140 and 280 kg N ha(-1)) of a single polyolefin-coated urea (PCU) application versus split applications of urea on 'Russet Burbank' potato yield and on NO3 leaching and N recovery efficiency (RE) on a loamy sand. Standard irrigation was applied in all years and excessive irrigation was used in another experiment in the third year. At the recommended rate of 280 kg N ha(-1), NO3 leaching during the growing season was 34 to 49% lower with PCU than three applications of urea. Under standard irrigation in the third year, leaching from five applications of urea (280 kg N ha(-1)) was 38% higher than PCU. Under leaching conditions in the first year (> or = 25 mm drainage water in at least one 24-h period) and excessive irrigation in the third year, PCU at 280 kg N ha(-1) improved total and marketable tuber yields by 12 to 19% compared with three applications of urea. Fertilizer N RE estimated by the difference and 15N isotope methods at the 280 kg N ha(-1) rate was, on average, higher with PCU (mean 50%) than urea (mean 43%). Fertilizer N RE values estimated by the isotope method (mean 51%) were greater than those estimated by the difference method (mean 47%). Results from this study indicate that PCU can reduce leaching and improve N recovery and tuber yield during seasons with high leaching.  相似文献   

3.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   

4.
An experiment was performed to better understand to what extent nitrogen fertilization rate and date and amount of urine deposition, when acting in combination, influence nitrate leaching under grassland. Leaching was studied during two successive winters using 2-m2 grassed lysimeters under three levels of N fertilization (0, 150, and 300 kg N ha(-1) yr(-1), referred to as 0N, 150N, and 300N, respectively), two levels of 15N-labeled urine (105 and 165 kg N ha(-1), referred to as A2 and A3, respectively), and three dates of urine application (spring, summer, and fall). During the first winter, total N leaching losses varied between 2 and 50 kg N ha(-1). When tested in combination, N applied as urine to grassland resulted in three times the total N loss by leaching that occurred following N fertilization in the first winter (4.3, 20.8, 34.9, 14.2, 17.1, and 28.7 kg NO3- -N ha(-1) for no urine, A2, A3, ON, 150N, and 300N, respectively). Leaching of 15N urine significantly depended on the date of application: 6.6, 17.3, and 29.1 kg for spring, summer, and fall, respectively. A similar pattern was observed for the contribution of 15N urine to total N leaching with 4.3, 12.9, and 21.4%. However, urine application, both in terms of amount and date, showed very little long-term effect on these N losses in Year 2. In our conditions of low winter rainfall and drainage, grazing management (through season, urinary N amounts, and urine N concentration) resulted in a higher impact on water nitrate quality than moderate N fertilization management.  相似文献   

5.
Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and currently managed under a no-till corn-soybean [Glycine max (L.) Merr.] rotation. In general, drainflow and nitrate N losses per unit area were greater for narrower drain spacings. Drainflow removed between 8 and 26% of annual rainfall, depending on year and drain spacing. Nitrate N concentrations in drainflow did not vary with spacing, but concentrations have significantly decreased from the beginning to the end of the experiment. Flow-weighted mean concentrations decreased from 28 mg L(-1) in the 1986-1988 period to 8 mg L(-1) in the 1997-1999 period. The reduction in concentration was due to both a reduction in fertilizer N rates over the study period and to the addition of a winter cover crop as a "trap crop" after corn in the corn-soybean rotation. Annual nitrate N loads decreased from 38 kg ha(-1) in the 1986-1988 period to 15 kg ha(-1) in the 1997-1999 period. Most of the nitrate N losses occurred during the fallow season, when most of the drainage occurred. Results of this study underscore the necessity of long-term research on different soil types and in different climatic zones, to develop appropriate management strategies for both economic crop production and protection of environmental quality.  相似文献   

6.
Accurate input data for leaching models are expensive and difficult to obtain which may lead to the use of "general" non-site-specific input data. This study investigated the effect of using different quality data on model outputs. Three models of varying complexity, GLEAMS, LEACHM, and HYDRUS-2D, were used to simulate pesticide leaching at a field trial near Hamilton, New Zealand, on an allophanic silt loam using input data of varying quality. Each model was run for four different pesticides (hexazinone, procymidone, picloram and triclopyr); three different sets of pesticide sorption and degradation parameters (i.e., site optimized, laboratory derived, and sourced from the USDA Pesticide Properties Database); and three different sets of soil physical data of varying quality (i.e., site specific, regional database, and particle size distribution data). We found that the selection of site-optimized pesticide sorption (Koc) and degradation parameters (half-life), compared to the use of more general database derived values, had significantly more impact than the quality of the soil input data used, but interestingly also more impact than the choice of the models. Models run with pesticide sorption and degradation parameters derived from observed solute concentrations data provided simulation outputs with goodness-of-fit values closest to optimum, followed by laboratory-derived parameters, with the USDA parameters providing the least accurate simulations. In general, when using pesticide sorption and degradation parameters optimized from site solute concentrations, the more complex models (LEACHM and HYDRUS-2D) were more accurate. However, when using USDA database derived parameters, all models performed about equally.  相似文献   

7.
In this paper we investigate at laboratory scale the influence of the liquid/solid leaching conditions on the release of different chemical species from a reference porous material obtained by solidification of PbO and CdO with Portland cement. The pH influence on the dissolution of pollutants and the initial pore solution composition (target elements: Na(+), K(+), Ca(2+), Pb(2+), Cd(2+), SO(4)(2-)) were assessed by applying a methodology consisting of two equilibrium leaching tests, the Acid Neutralization Capacity (ANC) and the Pore Water (PW) tests and geochemical modelling. Samples of the same material were submitted in parallel to four different dynamic leaching tests in order to determine the influence of the sample shape (monolithic or granular) and eluate hydrodynamics (instantaneous L/S ratio, eluate renewal) on the leaching of the target elements. The comparison criteria were the eluate saturation state, the cumulative release and the released flux. Generally, the eluates obtained in the tests applied on granular material were more concentrated, even saturated for the eluate pH value with respect to Ca(2+), Pb(2+) and SO(4)(2-). The consequence of the eluate saturation is the slowing down effect on the dynamic release. The highest released flux was observed for the Monolith Leaching Test (MLT) involving the highest instantaneous L/S ratio and the lowest solid/liquid exchange surface and for which no saturation was observed, except Pb(2+) and SO(4)(2-) in some eluates. The maximum cumulative released-mass was obtained for the Column Leaching Test (CLT) applied on granular material having the highest exchange surface, the lowest instantaneous L/S and a continuous input flow of the leachant. The experimental results demonstrate the significance of the liquid/solid contact type which is also a scenario specific parameter.  相似文献   

8.
This paper deals with process identification and model development for the case of a porous reference material leaching under certain hydrodynamic conditions. Four different dynamic leaching tests have been applied in order to take into account different types of solid/liquid contact conditions corresponding to various real leaching scenarios: monolithic and granular material with sequential eluate renewal, and granular material and continuously renewed eluate with different hydrodynamic conditions (dispersion, residence time). A coupled chemical-mass transfer model has been developed to describe the leaching behaviour under all experimental conditions. Diffusion has been considered as the mass transport mechanism inside the saturated porous material and dispersive convection as that in the leachate. Two specific phenomena have been identified and considered in the model: (i) the early surface dissolution of the material which results in high Ca concentration and (ii) the late weak dissolution of Na and K giving rise to a long-term residual release. The intrinsic material parameters such as the initial concentrations in the pore water and solid phases were determined by applying equilibrium leaching tests and geochemical modelling. Diffusion coefficients for different elements and the late solubility of alkalines have been found to reach the same values in the four tests. The estimated values of the surface dissolution kinetic constant have shown a dependence on leachate hydrodynamics when the thickness of the degraded layer is nearly the same in the four tests (intrinsic parameter of the material). The competition between the four main dynamic processes, i.e. diffusion, convection, late dissolution, and surface dissolution, has been emphasized and compared in the four leaching tests: the hydrodynamic dispersion and the residence time had no effect on the leaching behaviour of alkalines, which is controlled by diffusion, whereas the behaviour of calcium (a major element of the material) was strongly influenced. This has significant effects on eluate pH values and on the concentration of Pb (the monitored pollutant). The model was then applied to simulate a landfill scenario in the case of a stabilized/solidified incinerator residue containing heavy metals and chloride. A high rain infiltration level and the use of small blocs are favourable conditions for enhanced pollutant release.  相似文献   

9.
Informal recycling networks are systems through which impoverished populations earn money and residents recycle waste which might otherwise go into a landfill. These networks, in which people voluntarily self-organise to collect recyclables, occur throughout the world. This article discusses results of an exploratory, qualitative study of one such network in St. John's, Newfoundland and Labrador which identifies motivational characteristics of the network and their implications for public policy. Through close attention to particularities of place, the research identified community interaction and community inclusion as two of the most active motivating factors within the studied network. The findings suggest public recycling programmes can increase public participation through greater attention to place-based motivational factors. Such participation could contribute to increased sustainability and reach of recycling programmes.  相似文献   

10.
The leaching of surface-applied herbicides, such as dicamba (2methoxy-3,6-dichlorobenzoic acid), to ground water is an environmental concern. Seasonal changes in soil temperature and water content, affecting infiltration and biodegradation, may control leaching. The objectives of this study were to (i) investigate the leaching of dicamba applied to turfgrass, (ii) measure the degradation rate of dicamba in soil and thatch in the laboratory under simulated field conditions, and (iii) test the ability of the model EXPRES (containing LEACHM) to simulate the field transport and degradation processes. Four field lysimeters, packed with sandy loam soil and topped with Kentucky bluegrass (Poa pratensis L.) sod, were monitored after receiving three applications (May, September, November) of dicamba. Concentrations of dicamba greater than 1 mg L(-1) were detected in soil water. Although drying of the soil during the summer prevented deep transport, greater leaching occurred in late autumn due to increased infiltration. From the batch experiment, the degradation rate for dicamba in thatch was 5.9 to 8.4 times greater than for soil, with a calculated half-life as low as 5.5 d. Computer modeling indicated that the soil and climatic conditions would influence the effectiveness of greater degradation in thatch for reducing dicamba leaching. In general, EXPRES predictions were similar to observed concentration profiles, though peak dicamba concentrations at the 10-cm depth tended to be higher than predicted in May and November. Differences between predictions and observations are probably a result of minor inaccuracies in the water-flow simulation and the model's inability to modify degradation rates with changing climatic conditions.  相似文献   

11.
With the objectives of analyzing N recovery and potential N losses in the warm-season hybrid bermudagrass 'Tifgreen' [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy], two greenhouse studies were conducted. Plugs were planted in PVC cylinders filled with a modified sandy growing medium. Urea (URE), sulfur-coated urea (SCU), and Hydroform (HYD) (Hydro Agri San Francisco, Redwood City, CA) were broadcast at rates of 100 and 200 kg N ha-1 every 20 and 40 d. The grass was clipped three times every 10 d and analyzed for N concentration and N yield. In addition, leachates were analyzed for NO3-N. Use of the least soluble source, HYD, resulted in the lowest average clipping N concentration and N yield, as compared with SCU and URE. Clipping N concentration and N yield showed a cyclic pattern through time, particularly under long-day (> 12 h) conditions. When the photoperiod decreased below 12 h, leachate NO3-N concentration exceeded the standard limit for drinking water (10 mg L-1) by 10 to 19 times with the high SCU and URE application rate and frequency. However, leaching N losses represented a minimal fraction (< 1%) of the total applied N. More applied N was recovered in plant tissues using SCU and URE (89.5%) than using HYD (64.1%), with more than 52% of applied N accumulating in clipping. Highly insoluble N sources such as HYD decrease N leaching losses but may limit bermudagrass growth and quality. Risks of NO3-N losses in bermudagrass can be avoided by proper fertilization and irrigation programs, even when a highly soluble N source is used.  相似文献   

12.
Internal cycling of nutrients from the sediment and water column can be an important contribution to the total nutrient load of an aquatic ecosystem. Our objective was to estimate the internal nutrient loading of the Lower St. Johns River (LSJR). Dissolved reactive phosphorus (DRP) and ammonium (NH(4)-N) flux from sediments were measured under aerobic and anaerobic water column conditions using intact cores, to estimate the overall contribution of the sediments to P and N loading to the LSJR. The DRP flux under aerobic water column conditions averaged 0.13 mg m(-2) d(-1), approximately 37 times lower than that under anaerobic conditions (4.77 mg m(-2) d(-1)). The average NH(4)-N released from the anaerobic cores (18.03 mg m(-2) d(-1)) was also significantly greater than in the aerobic cores for all sites and seasons, indicating the strong relationship between nutrient fluxes and oxygen availability in the water column. The mean annual internal DRP load was estimated to be 330 metric tons (Mg) yr(-1), 21% of the total P load to the river, while the mean annual internal load of NH(4)-N was determined to be 2066 Mg yr(-1), 28% of the total N load to the LSJR estuary. As water resource managers reduce external loading to the LSJR the frequency of anaerobic events should decline, thereby reducing nutrient fluxes from the sediment to the water column, reducing the internal loading of DRP and NH(4)-N. Results from this study demonstrate that the internal flux of nutrients from sediments may be a significant portion of the total load and should be accounted for in the total nutrient budget of the river for successful restoration.  相似文献   

13.
The Nitrate Sensitive Area (NSA) scheme and the more recent Nitrate Vulnerable Zone (NVZ) scheme are responses by the British Government to the growing demands of European legislation on water quality. Both are designed to check nitrate contamination from agriculture at source, with 'polluting' activities being changed or prohibited in areas forming the catchment of waters where the 1980 European Commission (EC) limit of 50 mg/l nitrate (N) is exceeded, or is likely to be exceeded. The NVZ scheme provides protection to surface and ground water,whereas the NSA scheme relates directly to the latter. Furthermore, action programmes to reduce nitrate pollution within NVZs are mandatory and uncompensated, whilst the more strict but voluntary measures of the NSA scheme are compensated. This paper sets out to critically analyse the NVZ scheme, with reference to the NSA scheme and further makes recommendations for an improved nitrate pollution land use control policy in relation to ground water protection. The study area is Minster NVZ on the Isle of Thanet in north east Kent.  相似文献   

14.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass.  相似文献   

15.
An Assessment of Ecosystem Risks in the St. Croix National Scenic Riverway   总被引:4,自引:0,他引:4  
The information needed for conducting the risk assessment was provided by the participants in a 2-day workshop. The invited participants, who possessed knowledge of the St. Croix ecosystem, identified through a group-consensus process a list of stressors and a list of ecosystem values. They then assigned numerical values to each stressor-ecosystem value pair that reflected the degree to which the given stressor contributes to ecosystem risk as measured by the given ecosystem value. Based on this information, the analytical portion of the methodology was then used to rank the ecosystem risks (stressors) when examined from several different perspectives: immediate impact, time-duration, and management activities. Regardless of the perspective taken, riverway development emerged as the most significant stressor.  相似文献   

16.
The drainage of water and leaching of dissolved constituents represent major components of agroecosystem mass budgets that have been exceedingly difficult to measure. Equilibrium-tension lysimeters (ETLs) were used to monitor drainage, nitrogen (N), and carbon (C) leaching through Plano silt loam (fine-silty, mixed, superactive, mesic Typic Argiudoll) for a 4-yr period in a restored prairie and N-fertilized no-tillage and chisel-plowed maize (Zea mays L.) agroecosystems. Mean drainage recorded during 4 yr for the prairie, no-tillage, and chisel-plowed ecosystems totaled 461, 1,116, and 1,575 mm and represented 16, 33, and 47% of precipitation plus melting of drifted snow received, respectively. Total inorganic N leaching losses during the 4-yr period for the prairie, no-tillage, and chisel-plowed ecosystems were 0.6, 201, and 179 kg N ha(-1), respectively. Inorganic N leaching represented 26 and 24% of applied fertilizer N additions to the no-tillage and chisel-plowed agroecosystems. Total dissolved C leaching losses were 119, 435, and 502 kg C ha(-1) for the prairie, no-tillage, and chisel-plowed ecosystems, respectively. Sufficient dissolved organic carbon (DOC) and nitrate N (NO3- -N) existed in the prairie and agroecosystems to support subsoil denitrification. Potential denitrification, however, was limited by insufficient lengths of saturated soil conditions in all three ecosystems, the supply of DOC in the agroecosystems, and the supply of nitrate N in the prairie. Based on available DOC and nitrate N, the maximum contribution of denitrification below the root zone in the agroecosystems was less than 25% of the total amount of leached nitrate N and the probable contribution of denitrification was much less.  相似文献   

17.
Groundwater pollution and associated effects on drinking water have increased with the expansion of irrigated agriculture in north-central U.S. sand plains. Controlling this pollution requires an ability to measure and predict pollutant loading by specific agricultural systems. We measured NO3 and Cl loading to groundwater beneath a Wisconsin central sand plain irrigated vegetable field using both a budget method and a new monitoring-based method. By relying on frequent monitoring of shallow groundwater, the new method overcomes some limitations of other methods. Monitoring-based and budget methods agreed well, and indicated that loading to groundwater was 165 kg ha(-1) NO3-N and 111 kg ha(-1) Cl for sweet corn (Zea mays L.) in 1992, and 228 kg ha(-1) NO3-N and 366 kg ha(-1) Cl for potato (Solanum tuberosum L.) in 1993. Nitrate N loading was 56 to 60% of available N, or 66 to 70% of fertilizer N. Sweet corn NO3 loading was about typical for this region, but potato NO3 loading was probably 50% greater than typical because heavy rains provoked extra fertilizer application. Our results imply that typical NO3-N loading would be 119 kg ha(-1) for sweet corn and 203 kg ha(-1) for potato, even with strict adherence to University Extension fertilizer recommendations. To keep average groundwater NO3-N within the 10 mg L(-1) U.S. drinking water standard, each irrigated vegetable field would need to be offset by five to eight times as much land supplying NO3-free groundwater recharge.  相似文献   

18.
Artificially draining soils using subsurface tiles is a common practice on many agricultural fields. High levels of nitrate-nitrogen (NO-N) are often released from these systems; therefore, knowledge on the sources and processes controlling NO-N in drainage systems is needed. A dual isotope study (δN and δO) was used to investigate three subsurface drainage systems (shallow, conventional, and controlled) in Onslow, Nova Scotia, Canada. The objectives of this study were (i) to identify which drainage system more effectively reduced the NO-N loading, (ii) to examine differences in isotopic signatures under identical nutrient and cropping regimes for a fixed soil type, and (iii) to identify the utility of different drainage systems in controlling nutrient flows. Nitrate concentrations measured ranged from 0.92 to 11.8, from 2.3 to 17.3, and from 2.1 to 19.8 mg L for the shallow, conventional, and controlled drains, respectively. Total NO-N loading from shallow and controlled drains were 20 and 5.6 kg ha, respectively, lower than conventional (39.1 kg ha). The isotopic composition of NO-N for all drainage types appeared to be a mixture of two organic sources (manure and soil organic matter) via the process of nitrification. There was no evidence that denitrification played a significant role in removing NO-N during transport. Overall, shallow drainage reduced NO-N loading but offered no water conservation benefits. Combining the benefits of decreased NO-N loading from shallow systems with water control capability may offer the best solution to reducing nutrient loadings into water systems, achieving optimal crop yield, and decreasing drainage installation costs.  相似文献   

19.
The official environmental discourse in Laos describes a “chain of degradation” stretching from upland shifting cultivation, increased runoff and soil erosion to the siltation of wetlands and reservoirs. This perspective has had wide‐ranging impacts on rural development policy which, in the uplands, has long favoured forest conservation over agriculture. Integrating soil erosion and water sediment data with local perceptions of land degradation in an upland village of northern Laos, this study tests the validity of the official environmental discourse. Biophysical measurements made in a small agricultural catchment indicate a significant correlation between the spatial extent of cultivation and soil erosion rates. However, sediment yields recorded at the outlet of the catchment highlight relatively low levels of off‐site sediment exportation. Furthermore, farmers' perceptions suggest that local land degradation issues and crop yield declines could be less related to soil erosion than to agricultural land shortage, increased weed competition, and fertility losses resulting from the intensification of shifting cultivation. The study concludes that a better understanding and management of land degradation issues can be achieved by developing more inclusive and scientifically‐informed approaches to environmental perceptions and narratives.  相似文献   

20.
Allums, Stephanie E., Stephen P. Opsahl, Stephen W. Golladay, David W. Hicks, and L. Mike Conner, 2012. Nitrate Concentrations in Springs Flowing Into the Lower Flint River Basin, Georgia U.S.A. Journal of the American Water Resources Association (JAWRA) 48(3): 423-438. DOI: 10.1111/j.1752-1688.2011.00624.x Abstract: Analysis of long-term data from (2001-2009) in four springs that discharge from the Upper Floridan aquifer into the Flint River (southwestern Georgia, United States) indicate aquifer and surface-water susceptibility to nutrient loading. Nitrate-N concentrations ranged from 1.74 to 3.30 mg/l, and exceeded historical levels reported for the Upper Floridan aquifer (0.26-1.52 mg/l). Statistical analyses suggest increasing nitrate-N concentration in groundwater discharging at the springs (n = 146 over eight years) and that nitrate-N concentration is influenced by a dynamic interaction between depth to groundwater (an indicator of regional hydrologic conditions) and land use. A one-time synoptic survey of 10 springs (6 springs in addition to the 4 previously mentioned) using stable isotopes generated δ15N-NO3 values (4.8-8.4‰ for rural springs and 7.7-13.4‰ for developed/urban springs) suggesting mixed sources (i.e., fertilizer, animal waste, and soil organic nitrogen) of nitrate-N to rural springs and predominantly animal/human waste to urban springs. These analyses indicate a direct relation between nitrate-N loading since the 1940s and intensification of agricultural and urban land use. This study demonstrates the importance of evaluating long-term impacts of land use on water quality in groundwater springs and in determining how rapidly these changes occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号