首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This is an overview of the strategy used to describe the effects of a potential release from a radioactive waste repository on human exposure and future environments. It introduces a special issue of AMBIO, in which 13 articles show ways of understanding and characterizing the future. The study relies mainly on research performed in the context of a recent safety report concerning a repository for spent nuclear fuel in Sweden (the so-called SR-Site project). The development of a good understanding of on-site processes and acquisition of site-specific data facilitated the development of new approaches for assessment of surface ecosystems. A systematic and scientifically coherent methodology utilizes the understanding of the current spatial and temporal dynamics as an analog for future conditions. We conclude that future ecosystem can be inferred from a few variables and that this multidisciplinary approach is relevant in a much wider context than radioactive waste.  相似文献   

2.
Werner K  Bosson E  Berglund S 《Ambio》2006,35(8):425-434
Safety assessment related to the siting of a geological repository for spent nuclear fuel deep in the bedrock requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. Using the Laxemar candidate site in Sweden as a case study, this paper describes modeling methodology, data integration, and the resulting water flow models, focusing on the Quaternary deposits and the upper 150 m of the bedrock. Example simulations identify flow paths to groundwater discharge areas and flow paths in the surface system. The majority of the simulated groundwater flow paths end up in the main surface waters and along the coastline, even though the particles used to trace the flow paths are introduced with a uniform spatial distribution at a relatively shallow depth. The calculated groundwater travel time, determining the time available for decay and retention of radionuclides, is on average longer to the coastal bays than to other biosphere objects at the site. Further, it is demonstrated how GIS-based modeling can be used to limit the number of surface flow paths that need to be characterized for safety assessment. Based on the results, the paper discusses an approach for coupling the present models to a model for groundwater flow in the deep bedrock.  相似文献   

3.
Wijnbladh E  Jönsson BF  Kumblad L 《Ambio》2006,35(8):484-495
Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.  相似文献   

4.
Assessments of radiological impacts on humans and other biota from potential releases to the biosphere from a deep geologic repository for spent nuclear fuel are associated with several challenges. Releases, if any, will likely occur in a far future and to an environment that will have experienced substantial transformations. Such releases would occur over very long periods during which environmental conditions will vary continuously due to climate change and ecosystem succession. Assessments of radiological impacts must therefore be based on simulations using models that can describe the transport and accumulation of radionuclides for a large variety of environmental conditions. In this paper we describe such a model and show examples of its application in a safety assessment, taking into account results from sensitivity and uncertainty analyses of the model predictions.  相似文献   

5.
Processes that control the redox conditions in deep groundwaters have been studied. The understanding of such processes in a long-term perspective is important for the safety assessment of a deep geological repository for high-level nuclear waste. An oxidising environment at the depth of the repository would increase the solubility and mobility of many radionuclides, and increase the potential risk for radioactive contamination at the ground surface. Proposed repository concepts also include engineered barriers such as copper canisters, the corrosion of which increases considerably in an oxidising environment compared to prevailing reducing conditions. Swedish granitic rocks are typically relatively sparsely fractured and are best treated as a dual-porosity medium with fast flowing channels through fractures in the rock with a surrounding porous matrix, the pores of which are accessible from the fracture by diffusive transport. Highly simplified problems have been explored with the aim to gain understanding of the underlying transport processes, thermodynamics and chemical reaction kinetics. The degree of complexity is increased successively, and mechanisms and processes identified as of key importance are included in a model framework. For highly complex models, analytical expressions are not fully capable of describing the processes involved, and in such cases the solutions are obtained by numerical calculations. Deep in the rock the main source for reducing capacity is identified as reducing minerals. Such minerals are found inside the porous rock matrix and as infill particles or coatings in fractures in the rock. The model formulation also allows for different flow modes such as flow along discrete fractures in sparsely fractured rocks and along flowpaths in a fracture network. The scavenging of oxygen is exemplified for these cases as well as for more comprehensive applications, including glaciation considerations. Results show that chemical reaction kinetics control the scavenging of oxygen during a relatively short time with respect to the lifetime of the repository. For longer times the scavenging of oxygen is controlled by transport processes in the porous rock matrix. The penetration depth of oxygen along the flowpath depends largely on the hydraulic properties, which may vary significantly between different locations and situations. The results indicate that oxygen, in the absence of easily degradable organic matter, may reach long distances along a flow path during the life-time of the repository (hundreds to thousands of metres in a million years depending on e.g. hydraulic properties of the flow path and the availability of reducing capacity). However, large uncertainties regarding key input parameters exist leading to the conclusion that the results from the model must be treated with caution pending more accurate and validated data. Ongoing and planned experiments are expected to reduce these uncertainties, which are required in order to make more reliable predictions for a safety assessment of a nuclear waste repository.  相似文献   

6.
This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.  相似文献   

7.
For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.  相似文献   

8.
A particle-tracking model based on high-resolution ocean flow data was used to investigate particle residence times and spatial distribution of settling sediment for two geo-morphologically different Swedish coastal areas. The study was a part of a safety assessment for the location of a future nuclear-waste repository, and information about the particle-transport patterns can contribute to predictions of the fate of a possible leakage. It is also, to our knowledge, the first time particle-transport differences between two coastal areas have been quantified in this manner. In Forsmark, a funnel-shaped bay shielded by a number of islands, the average residence time for clay particles was 5 times longer than in the modeled part of Simpevarp, which is open to the Baltic Sea. In Forsmark, <10 % of the released particles left the domain compared to 60–80 % in Simpevarp. These site-specific differences will increase over time with the differences in land uplift between the areas.  相似文献   

9.
REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the new European chemical legislation which aims to assess risk or safety of tens of thousands of chemicals to improve the protection of human health and the environment. The chemical safety assessment process is of an iterative nature. First, an initial, worst-case assessment is conducted after which refinements are made until no risk has been estimated or the risk is adequately controlled. Wasting time and resources on additional testing and implementing risk management measures with low effect on risk conclusions should be avoided as much as possible. This paper demonstrates the usefulness of an intelligent data collection strategy based on a sensitivity (and uncertainty) analysis on the risk assessment model EUSES to identify and order the most important "within-EU-TGD-reducible" input parameters influencing the local and regional risk characterisation ratios. The ordering can be adjusted for the costs involved in additional testing (e.g. ecotoxicity, physico-chemical properties, emission estimates, etc.). The risk refinement tool therefore reduces the resources needed to obtain a realistic risk estimate (both less conservative and less uncertain) as efficient as possible.  相似文献   

10.
Medina MH  Correa JA  Barata C 《Chemosphere》2007,67(11):2105-2114
Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.  相似文献   

11.
The sorption of radionuclides on natural colloids may significantly modify their transport behaviour through fractured media, since radionuclides bound to colloids may not be subject to the important retardation mechanisms of matrix diffusion and sorption onto pore surfaces. This paper reports on theoretical and experimental work aimed at assessing the relevance of colloid-facilitated transport to repository safety analyses, with specific reference to the Swiss case. Transport models are presented, developed in conjunction with field- and laboratory-based studies of deep groundwater in the crystalline basement of northern Switzerland, in which colloid size distributions, compositions and sorption properties have been measured. Various potential mechanisms giving rise to both reversible and irreversible sorption are discussed. In the first case, a simple approach is examined which is based on previously reported models of colloid transport and assumes reversible, linear sorption on colloids, for which experimental data have been obtained. It is shown that transport of radionuclides would not, in general, be significantly enhanced because of this process. A more recently developed and more complex model is then described incorporating irreversible sorption, in which case the transport of radionuclides tends to be strongly dependent on the extent of colloid-fracture wall interaction.  相似文献   

12.
Laboratory and modeling studies were conducted to assess the potential performance of a permeable reactive barrier constructed of a natural zeolite material at the West Valley Demonstration Project in western New York State. The results of laboratory column tests indicated that the barrier material would be effective at removing strontium from groundwater under natural gradient conditions. Two one-dimensional contaminant transport models were developed to interpret the data. A single-solute retardation factor model provided good agreement with the column test data, but time-consuming extraction and analysis of the zeolite material was required to parameterize the model. A preliminary six-solute model was also developed based on the assumption of competitive cation exchange as the primary removal mechanism. Both models yielded similar predictions of the long-term performance of the barrier, but the cation exchange model predicted higher effluent concentrations during the first 1000 pore volumes of operation. The cation exchange framework has several advantages, including the ability to calibrate the model using only data from column effluent samples, and the ability to account for site-specific differences in the groundwater cation composition. However, additional laboratory work is needed to develop a suitably robust model.  相似文献   

13.
Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Asp? underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.  相似文献   

14.
15.
Recent discovery of bomb-related 36Cl at depth in fractured tuff in the unsaturated zone at the Yucca Mountain candidate high-level waste (HLW) repository site has called into question the usual modeling assumptions based on the equivalent continuum model (ECM). A dual continuum model (DCM) for simulating transient flow and transport at Yucca Mountain is developed. In order to ensure properly converged flow solutions, which are used in the transport simulation, a new flow solution convergence criteria is derived. An extensive series of simulation studies is presented which indicates that rapid movement of solute through the fractures will not occur unless there are intense episodic infiltration events. Movement of solute in the environs of the repository is enhanced if the properties of the tuff layer at the repository horizon are modified from current best-estimate values. Due to a large advective–dispersive coupling between the matrix and fractures, the matrix acts as a major buffer which inhibits rapid transport along the fractures. Consequently, fast movement of solutes through the fractures to the repository depth can only be explained if the matrix–fracture coupling term is significantly reduced from a value that would be calculated on the basis of data currently available.  相似文献   

16.
《Chemosphere》2008,70(11):1802-1806
Screening level risk assessment models are used by many countries to assess the treatability of organic chemicals during the sewage treatment process, especially those that are new to commerce. The performance of one such model, the sewage treatment plant model, is evaluated in the current study by comparing model predictions with actual measurement data collected at various stages of a typical full-scale activated sludge type sewage treatment plant. A suite of ten polycyclic aromatic hydrocarbons (PAHs) with widely varying physico–chemical properties were monitored for the comparison. Model predicted removal efficiencies were in very good agreement with those measured for all ten PAHs. Observed chemical concentrations and their trends at various stages of the sewage treatment process were also well simulated by the model. Results also suggest that a reasonable first approximation estimate of a range for the biodegradation half-life needed for the model may be obtained by dividing reported aqueous biodegradation half-life by scaling factors of 50 and 150.  相似文献   

17.
Wang J  McPhedran KN  Seth R  Drouillard KG 《Chemosphere》2007,69(11):1802-1806
Screening level risk assessment models are used by many countries to assess the treatability of organic chemicals during the sewage treatment process, especially those that are new to commerce. The performance of one such model, the sewage treatment plant model, is evaluated in the current study by comparing model predictions with actual measurement data collected at various stages of a typical full-scale activated sludge type sewage treatment plant. A suite of ten polycyclic aromatic hydrocarbons (PAHs) with widely varying physico–chemical properties were monitored for the comparison. Model predicted removal efficiencies were in very good agreement with those measured for all ten PAHs. Observed chemical concentrations and their trends at various stages of the sewage treatment process were also well simulated by the model. Results also suggest that a reasonable first approximation estimate of a range for the biodegradation half-life needed for the model may be obtained by dividing reported aqueous biodegradation half-life by scaling factors of 50 and 150.  相似文献   

18.
Avila RM  Kautsky U  Ekström PA 《Ambio》2006,35(8):513-523
To evaluate the radiological impact of potential releases to the biosphere from a geological repository for spent nuclear fuel, it is necessary to assess the long-term dynamics of the distribution of radionuclides in the environment. In this paper, we propose an approach for making prognoses of the distribution and fluxes of radionuclides released from the geosphere, in discharges of contaminated groundwater, to an evolving landscape. The biosphere changes during the temperate part (spanning approximately 20,000 years) of an interglacial period are handled by building biosphere models for the projected succession of situations. Radionuclide transport in the landscape is modeled dynamically with a series of interconnected radioecological models of those ecosystem types (sea, lake, running water, mire, agricultural land and forest) that occur at present, and are projected to occur in the future, in a candidate area for a geological repository in Sweden. The transformation between ecosystems is modeled as discrete events occurring every thousand years by substituting one model by another. Examples of predictions of the radionuclide distribution in the landscape are presented for several scenarios with discharge locations varying in time and space. The article also outlines an approach for estimating the exposure of man resulting from all possible reasonable uses of a potentially contaminated landscape, which was used for derivation of Landscape Dose Factors.  相似文献   

19.
Determining the performance of ecosystem services at the city or regional level cannot accurately take into account the fine differences between green or gray structures. The supply of regulating ecosystem services in, for instance, parks can differ as parks vary in their land cover composition. A comprehensive ecosystem service assessment approach also needs to reflect land use to consider the demands placed on ecosystem services, which are mostly neglected by current research yet important for urban planning. For instance, if a sealed surface is no longer used, it could be unsealed to improve ecosystem service supply. Because of these scientific shortcomings, this article argues for a conceptual framework for the non-monetary assessment of urban ecosystem services at the site scale. This paper introduces a standardized method for selecting representative sites and evaluating their supply of and demand on ecosystem services. The conceptual design is supplemented by examples of Salzburg, Austria.  相似文献   

20.
New concerns about biodiversity, ecosystem services and human health triggered several new regulations increasing the need for sound ecotoxicological risk assessment. The PEER network aims to share its view on the research issues that this challenges. PEER scientists call for an improved biologically relevant exposure assessment. They promote comprehensive effect assessment at several biological levels. Biological traits should be used for Environmental risk assessment (ERA) as promising tools to better understand relationships between structure and functioning of ecosystems. The use of modern high throughput methods could also enhance the amount of data for a better risk assessment. Improved models coping with multiple stressors or biological levels are necessary to answer for a more scientifically based risk assessment. Those methods must be embedded within life cycle analysis or economical models for efficient regulations. Joint research programmes involving humanities with ecological sciences should be developed for a sound risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号