首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Solomon Islands is vulnerable to negative impacts from climate change, where people’s livelihoods and their well-being are threatened, especially the viability of isolated communities. Realising the increasing risks from climate change on communities, government, in partnership with aid-donor partners, has invested millions of dollars in climate change projects, through mitigation and adaptation strategies. As a form of adaptation, the government invests in programmes aimed at increasing the adaptive capacity of the vulnerable communities through landscape and seascape projects across the rural communities. Focusing on the “transformation concept” as a long-term adaptation strategy and enlargement of climate engineering and ecological resilience concepts, the paper discusses why building resilience from transformation of rural communities, as well as from landscape and seascape projects, would benefit communities and relevant authorities. This paper describes the findings of a study on two rural villages, Keigold and Mondo, from Ranogha Islands, Western Province, in Solomon Islands, where 80% of households decided to relocate from their old village “Mondo” to their new home “Keigold” after an earthquake in 2007, as part of a self-initiative. The reallocation process can be seen as a case of pro-active community transformation that provides valuable lessons to other rural communities that may be forced to move due to impacts from natural catastrophes, including those explained by climate change risks. Lessons from this experience suggest that policy-makers and non-government organisations should consider and empower local transformation initiatives as a way to building long-term adaptation to climate change.  相似文献   

2.
Ecohealth is a process for identifying key environmental determinants causing mortality or morbidity and combating them by mobilizing multiple social sectors. Evolving out of the concept of environmental health, ecohealth provides a framework for long‐term sustainability. The health outcomes anticipated by environmental interventions are part of a long‐term agenda and require fundamental groundwork for the growth of community‐driven development. Building long‐term sustainability requires that two key approaches be developed through ecohealth. The first is the strengthening of local community institutions, whether formal or informal. The second is building financial mechanisms that are more diversified and less reliant on a single donor. As a result, the ecohealth system provides an opportunity for foundations to empower communities, build cross‐cutting cooperation, and gain knowledge through projects. If people's environmental behaviour is to change and be sustained in the long term to produce desired health outcomes, this will require all members of society to be capable of functioning within the existing institutional infrastructure. This means that not only do formal institutions need to become more accessible but also that concepts relating to local informal institutions must be incorporated into ecohealth projects. It is imperative that we identify and understand relevant local institutions and how they can be transformed so that new environmental forms of behaviour can be sustained and result in positive health outcomes. The intersection of environmental and health concerns provides an ideal area in which the gap between government and civil society can be bridged — not only providing solutions to ecohealth concerns, but building government capacity in general and making these positive changes sustainable in the long term. This article is a case study, based on several United Nations Foundation grants. It outlines the significance of traditional community organizations, the breadth of their long‐term relations with communities, their resources, and the adoption of sustained forms of behaviour. In addition, the article highlights the role that international foundations can play in creating innovative financing mechanisms through community‐based foundations.  相似文献   

3.
Alessa, Lilian, Mark Altaweel, Andrew Kliskey, Christopher Bone, William Schnabel, and Kalb Stevenson, 2011. Alaska’s Freshwater Resources: Issues Affecting Local and International Interests. Journal of the American Water Resources Association (JAWRA) 47(1):143‐157. DOI: 10.1111/j.1752‐1688.2010.00498.x Abstract: The State of Alaska faces a broad range of freshwater challenges including limited resource access in rural communities, increasing freshwater use, and a pressing need to better understand and prepare for climate‐driven change. Despite these significant issues, Alaska is relatively water‐rich and far more equipped to address its water resource concerns compared with other regions of the world. Globally, simultaneous and rapid water stresses have influenced and complicated conflicts and are motivating nations to develop markets and trade as one of the primary means to manage their needs for this resource. This paper presents these interacting issues in the context of Alaska’s relationship with a world undergoing significant social and ecological changes that affect freshwater supplies. We present the challenges faced by Alaska in the context of a larger global perspective, and briefly explore the relative effects these issues have on local, regional, and global scales. We present the argument that Alaska needs to develop more robust institutions and policies that can alleviate both household concerns and ensure that Alaska plays a significant role in the international freshwater arena for its long‐term resilience.  相似文献   

4.
Hirsch, Robert M., 2011. A Perspective on Nonstationarity and Water Management. Journal of the American Water Resources Association (JAWRA) 47(3):436‐446. DOI: 10.1111/j.1752‐1688.2011.00539.x Abstract: This essay offers some perspectives on climate‐related nonstationarity and water resources. Hydrologists must not lose sight of the many sources of nonstationarity, recognizing that many of them may be of much greater magnitude than those that may arise from climate change. It is paradoxical that statistical and deterministic approaches give us better insights about changes in mean conditions than about the tails of probability distributions, and yet the tails are very important to water management. Another paradox is that it is difficult to distinguish between long‐term hydrologic persistence and trend. Using very long hydrologic records is helpful in mitigating this problem, but does not guarantee success. Empirical approaches, using long‐term hydrologic records, should be an important part of the portfolio of research being applied to understand the hydrologic response to climate change. An example presented here shows very mixed results for trends in the size of the annual floods, with some strong clusters of positive trends and a strong cluster of negative trends. The potential for nonstationarity highlights the importance of the continuity of hydrologic records, the need for repeated analysis of the data as the time series grow, and the need for a well‐trained cadre of scientists and engineers, ready to interpret the data and use those analyses to help adjust the management of our water resources.  相似文献   

5.
Future climate change is a source of growing concerns for the supply of energy and resources, and it may have significant impacts on industry and the economy. Major effects are likely to arise from changes to the freshwater resources system, due to the connection of energy generation to these water systems. Using future climate data downscaled by a stochastic weather generator, this study investigates the potential impacts of climate change on long‐term reservoir operations at the Chungju multipurpose dam in South Korea, specifically considering the reliability of the supply of water and hydropower. A reservoir model, Hydrologic Engineering Center‐Reservoir System Simulation (HEC‐ResSim), was used to simulate the ability of the dam to supply water and hydropower under different conditions. The hydrologic model Soil and Water Assessment Tool was used to determine the HEC‐ResSim boundary conditions, including daily dam inflow from the 6,642 km2 watershed into the 2.75 Gm3 capacity reservoir. Projections of the future climate indicate that temperature and precipitation during 2070‐2099 (2080s) show an increase of +4.1°C and 19.4%, respectively, based on the baseline (1990‐2009). The results from the models suggest that, in the 2080s, the average annual water supply and hydropower production would change by +19.8 to +56.5% and by +33.9 to 92.3%, respectively. Model simulations suggest that under the new climatic conditions, the reliability of water and hydropower supply would be generally improved, as a consequence of increased dam inflow.  相似文献   

6.
Throughout history, mining communities have invariably found themselves striving for a good quality of life and a long‐term future. In the 21st century, problems of maintaining the economic vitality of mining regions are now compounded by concerns about the biophysical integrity of the local environment. In regions of the world where the economic viability of the resource is marginal and achieving a reasonable quality of life is a daily struggle, sustainable mining may seem to be a dubious prospect at best. Yet the twin imperatives of global political forces and burgeoning environmental concerns are requiring industry, governments and other interests to re‐conceptualize the way in which mining takes place in communities. Although mining itself may not be seen as an industry that contributes to the achievement of environmental objectives, it could — with careful planning — be used as a tool to foster a more sustainable and healthier community. This argument is considered in the context of the coal mining region of Santa Catarina, Brazil.  相似文献   

7.
This paper examines the impact of climate change on the decision of farmers to engage or not to engage in livestock activities and also on the choice of different livestock species in Kenya. To this end, cross‐sectional household level data supplemented by long‐term averages of climate data are used. The probit model is employed to derive the response of the probability of engaging in livestock activities to climate change. Probit and multivariate probit methods are employed to model the choice of different livestock species. Atmosphere–ocean global circulation models are used to project the impact of different climate scenarios on the probability of engaging in livestock activities and also of adopting different livestock species according to variations in climate. The results suggest that farmers adapt livestock management decisions to climate change. At low levels of temperature increase, the probability of engaging in livestock activities falls, but at higher levels of climate change, the probability rises. The results further show that as it gets hotter, farmers change their livestock choices from dairy cattle and sheep to beef cattle and goats.  相似文献   

8.
Viers, Joshua H., 2011. Hydropower Relicensing and Climate Change. Journal of the American Water Resources Association (JAWRA) 47(4):655‐661. DOI: 10.1111/j.1752‐1688.2011.00531.x Abstract: Hydropower represents approximately 20% of the world’s energy supply, is viewed as both vulnerable to global climate warming and an asset to reduce climate‐altering emissions, and is increasingly the target of improved regulation to meet multiple ecosystem service benefits. It is within this context that the recent decision by the United States Federal Energy Regulatory Commission to reject studies of climate change in its consideration of reoperation of the Yuba‐Bear Drum‐Spaulding hydroelectric facilities in northern California is shown to be poorly reasoned and risky. Given the rapidity of climate warming, and its anticipated impacts to natural and human communities, future long‐term fixed licenses of hydropower operation will be ill prepared to adapt if science‐based approaches to incorporating reasonable and foreseeable hydrologic changes into study plans are not included. The licensing of hydroelectricity generation can no longer be issued in isolation due to downstream contingencies such as domestic water use, irrigated agricultural production, ecosystem maintenance, and general socioeconomic well‐being. At minimum, if the Federal Energy Regulatory Commission is to establish conditions of operation for 30‐50 years, licensees should be required to anticipate changing climatic and hydrologic conditions for a similar period of time.  相似文献   

9.
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.  相似文献   

10.
ABSTRACT: There are increasing concerns in the forestry community about global climate change and variability associated with elevated atmospheric CO2. Changes in precipitation and increases in air temperature could impose additional stress on forests during the next century. For a study site in Carteret County, North Carolina, the General Circulation Model, HADCM2, predicts that by the year 2099, maximum air temperature will increase 1.6 to 1.9°C, minimum temperature will increase 2.5 to 2.8°C, and precipitation will increase 0 to 10 percent compared to the mid‐1990s. These changes vary from season to season. We utilized a forest ecosystem process model, PnET‐II, for studying the potential effects of climate change on drainage outflow, evapotranspiration, leaf area index (LAI) and forest Net Primary Productivity (NPP). This model was first validated with long term drainage and LAI data collected at a 25‐ha mature loblolly pine (Pinus taeda L.) experimental watershed located in the North Carolina lower coastal plain. The site is flat with poorly drained soils and high groundwater table. Therefore, a high field capacity of 20 cm was used in the simulation to account for the topographic effects. This modeling study suggested that future climate change would cause a significant increase of drainage (6 percent) and forest productivity (2.5 percent). Future studies should consider the biological feedback (i.e., stomata conductance and water use efficiency) to air temperature change.  相似文献   

11.
12.
Climate change poses many challenges for ecosystem and resource management. In particular, coastal planners are struggling to find ways to prepare for the potential impacts of future climate change while dealing with immediate pressures. Decisions on how to respond to future risks are complicated by the long time horizons and the uncertainty associated with the distribution of impacts. Existing coastal zone management approaches in the UK either do not adequately incorporate changing stakeholder preferences, or effectively ensure that stakeholders are aware of the trade-offs inherent in any coastal management decision. Using a novel method, scenario-based stakeholder engagement, which brings together stakeholder analysis, climate change management scenarios and deliberative techniques, the necessary trade-offs associated with long term coastal planning are explored. The method is applied to two case studies of coastal planning in Christchurch Bay on the south coast of England and the Orkney Islands off the north coast of Scotland. A range of conflicting preferences exist on the ideal governance structure to manage the coast under different climate change scenarios. In addition, the results show that public understanding of the trade-offs that have to be made is critical in gaining some degree of public support for long term coastal decision-making. We conclude that scenario-based stakeholder engagement is a useful tool to facilitate coastal management planning that takes into account the complexities and challenges of climate change, and could be used in conjunction with existing approaches such as the Shoreline Management Planning process.  相似文献   

13.
India has good reasons to be concerned about climate change as it could adversely affect the achievement of vital national development goals related to socio‐economic development, human welfare, health, energy availability and use, and infrastructure. The paper attempts to develop a framework for integrated impact assessment and adaptation responses, using a recently built railroad coastal infrastructure asset in India as an example. The framework links climate change variables — temperature, rainfall, sea level rise, extreme events, and other secondary variables — and sustainable development variables — technology, institutions, economic, and other policies. The study indicates that sustainable development variables generally reduce the adverse impacts on the system due to climate change alone, except when they are inadequately applied. The paper concludes that development is a vital variable for integrated impact assessment. Well crafted developmental policies could result in a less‐GHG intensive future, enhanced adaptive capacities of communities and systems, and lower impacts due to climate change.  相似文献   

14.
Restored annual streamflow (Qr) and measured daily streamflow of the Chaohe watershed located in northern China and associated long‐term climate and land use/cover data were used to explore the effects of land use/cover change and climate variability on the streamflow during 1961‐2009. There were no significant changes in annual precipitation (P) and potential evapotranspiration, whereas Qr decreased significantly by 0.81 mm/yr (< 0.001) over the study period with a change point in 1999. We used 1961‐1998 as the baseline period (BP) and 1999‐2009 the change period (CP). The mean Qr during the CP decreased by 39.4 mm compared with that in the BP. From 1979 to 2009, the grassland area declined by 69.6%, and the forest and shrublands increased by 105.4 and 73.1%, respectively. The land use/cover change and climate variability contributed for 58.4 and 41.6% reduction in mean annual Qr, respectively. Compared with the BP, median and high flows in the CP decreased by 38.8 and up to 75.5%, respectively. The study concludes that large‐scale ecological restoration and watershed management in northern China has greatly decreased water yield and reduced high flows due to the improved land cover by afforestation leading to higher water loss through evapotranspiration. At a large watershed scale, land use/cover change could play as much of an important role as climate variability on water resources.  相似文献   

15.
Abstract: Repeated severe droughts over the last decade in the South Atlantic have raised concern that streamflow may be systematically decreasing, possibly due to climate variability. We examined the monthly and annual trends of streamflow, precipitation, and temperature in the South Atlantic for the time periods: 1934‐2005, 1934‐1969, and 1970‐2005. Streamflow and climate (temperature and precipitation) trends transitioned ca. 1970. From 1934 to 1969, streamflow and precipitation increased in southern regions and decreased in northern regions; temperature decreased throughout the South Atlantic. From 1970 to 2005, streamflow decreased, precipitation decreased, and temperature increased throughout the South Atlantic. It is unclear whether these will be continuing trends or simply part of a long‐term climatic oscillation. Whether these streamflow trends have been driven by climatic or anthropogenic changes, water resources management faces challenging prospects to adapt to decadal‐scale persistently wet and dry hydrologic conditions.  相似文献   

16.
ABSTRACT: Data from long‐term ecosystem monitoring and research stations in North America and results of simulations made with interpretive models indicate that changes in climate (precipitation and temperature) can have a significant effect on the quality of surface waters. Changes in water quality during storms, snowmelt, and periods of elevated air temperature or drought can cause conditions that exceed thresholds of ecosystem tolerance and, thus, lead to water‐quality degradation. If warming and changes in available moisture occur, water‐quality changes will likely first occur during episodes of climate‐induced stress, and in ecosystems where the factors controlling water quality are sensitive to climate variability. Continued climate stress would increase the frequency with which ecosystem thresholds are exceeded and thus lead to chronic water‐quality changes. Management strategies in a warmer climate will therefore be needed that are based on local ecological thresholds rather than annual median condition. Changes in land use alter biological, physical, and chemical processes in watersheds and thus significantly alter the quality of adjacent surface waters; these direct human‐caused changes complicate the interpretation of water‐quality changes resulting from changes in climate, and can be both mitigated and exacerbated by climate change. A rigorous strategy for integrated, long‐term monitoring of the ecological and human factors that control water quality is necessary to differentiate between actual and perceived climate effects, and to track the effectiveness of our environmental policies.  相似文献   

17.
Moore, Johnnie N., Alicia S. Arrigoni, and Andrew C. Wilcox, 2012. Impacts of Dams on Flow Regimes in Three Headwater Subbasins of the Columbia River Basin, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 925‐938. DOI: 10.1111/j.1752‐1688.2012.00660.x Abstract: We compared long‐term changes in flow regimes resulting from climate change with those resulting from dams in three matched pairs of natural and modified headwater subbasins of the Columbia River. Based on the analysis of 12 flow‐regime metrics, we found that damming had minimal effect on most quantity of flow metrics, but major effect on timing of flow metrics, especially those representing “spring runoff.” In all modified subbasins, “spring runoff” metrics occurred much earlier than natural flow (up to ~44 days earlier for April‐July flows). Storage capacity modulated the magnitude of timing of flow‐metric changes, with the largest storage capacity leading to the most change. However, even in subbasins with low storage capacity, we found significant change in most timing of flow metrics. We also found that damming, especially in subbasins with higher storage capacity, overwhelmed climate variability in all basins for most flow metrics. This shows that reservoir operations need to be modified to more closely match the natural timing of flow regimes to promote positive ecologic response in modified rivers, even in basins where quantity of flow metrics have not changed substantially as a result of damming.  相似文献   

18.
ABSTRACT: Climate data from the Malcolm Knapp Research Forest (MKRF) in the Coast Range mountains of southwestern British Columbia were used to examine relationships between climate and hydrology and variations in the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Air and water temperatures were higher and precipitation was lower during in‐phase or warm PDO/E1 Niño events than in other years. In contrast, in‐phase or cool PDO/La Niña years were generally cooler and wetter than other years. Precipitation and East Creek discharge were positively related to the Southern Oscillation Index (SOI) and negatively related to the PDO index. Conversely, air and water temperatures were negatively related to the SOI and positively related to the PDO index. Differences in precipitation and air temperature were also evident at longer time scales when separated by PDO phase. Because of drier conditions during in‐phase El Niño events, the flow of organic matter from East Creek to downstream portions of the channel network was lower compared to other years. This reduction has implications for downstream communities, as these subsidies provide a major source of energy for stream food webs. Therefore, short term and long term shifts in climate, discharge, and water temperature may have profound impacts on the ecology of Pacific Northwest (PNW) watersheds due to changes in a number of ecosystem processes such as altered flux of organic matter from headwater streams to larger rivers.  相似文献   

19.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

20.
Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land‐Cover Data. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12010 Abstract: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water‐balance method was combined with a climate and land‐cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971‐2000 across the U.S. to obtain long‐term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land‐cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land‐cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land‐cover data can also improve those predictions. Using the climate and land‐cover data at an 800‐m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land‐cover data are plentiful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号