首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
关于粉尘云爆炸下限浓度的讨论   总被引:2,自引:1,他引:2  
运用Siwek20升球形粉尘爆炸装置,通过对几种工业粉尘测试研究,发现粉尘最低爆炸下限浓度与燃烧持续时间有关。对于不同的粉尘,从压力一时间曲线中得出的最大持续时间与利用IEC标准测定的爆炸下限浓度相接近。依据实验结果,提出了一种新的判据。  相似文献   

2.
利用激光粒度仪对三环唑粉尘的粒径分布进行分析,并用20 L爆炸球测试装置、哈特曼管装置探讨了粉尘质量浓度、点火延迟时间、点火能量、粒径分布对粉尘爆炸的影响并总结了相关规律。实验结果表明:粉尘粒度是影响粉尘最小点火能和爆炸下限的单调因素,粉尘质量浓度是影响粉尘爆炸压力的极值因素,点火延迟时间是影响粉尘最小点火能的极值因素。  相似文献   

3.
燃料空气混合物爆炸威力准确预测研究是学术界的一个难题。针对燃料空气混合物爆炸威力有效预测问题,采用神经网络方法,设计多层神经网络模型,进行实际预测应用。应用结果表明,采用的预测方法简便、可行,可以为燃料空气混合物爆炸威力预测提供一种新途径。相比3层BP模型,设计的预测模型可以减少训练次数,缩短训练时间,提高预测正确率,应用优势较明显。  相似文献   

4.
采用1.2 L哈特曼管爆炸装置分别对粒径小于54μm、74μm、150μm及大于150μm的戊唑醇粉尘进行测试。针对戊唑醇粉尘浓度及粒径范围对其最小点火能的影响,分别进行单因素试验,并对其危险性进行分级。结果表明,保持粒径小于150μm,环境温度为20℃,喷粉压力为0.7 MPa,在质量浓度100~1 300 g/m~3之间,戊唑醇粉尘的最佳敏感质量浓度ρ_m为983.71 g/m~3,此时的最小点火能为404.74 mJ。保持戊唑醇粉尘质量浓度为900 g/m~3,环境温度为20℃,喷粉压力为0.7 MPa不变,粒径小于54μm、74μm、150μm及大于150μm的戊唑醇粉尘的最小点火能分别为10 mJ、100 mJ、400 mJ和1 000 mJ以上。因此,判定戊唑醇粉尘最小点火能属于M2级,为特别着火敏感性。  相似文献   

5.
<正>美国化学安全与危险调查委员会(Chemical Safety and Hazard Investigation Board,CSB)统计发现,粉尘爆炸事故随着工业发展而逐年递增,进入21世纪后的粉尘爆炸事故是20世纪80年代的3倍之多。近年来,我国也发生了多起影响较大的粉尘爆炸事故,我们可从中认识到粉尘爆炸至少存在以下4个方面的误区。1.材料明火点不燃,认定该材料的粉尘不会爆炸。有些企业经常能碰到该类问题,企业管理人员当场拿出打火机试着去点燃某材料,但材料火焰没有蔓延,就认为该材料  相似文献   

6.
采用MIE-D1.2型最小点火能测试装置及20 L球型粉尘爆炸测试装置,对苯乙烯丙烯酸共聚物/碳黑混合体系粉尘的爆炸特性进行研究。结果表明,过74μm、58μm、47μm孔径筛的粉尘对静电火花敏感,其最小点火能表征值分别为610 mJ、361 mJ、201 mJ。随粉尘质量浓度增加,最小点火能呈现先减小后增加的规律。随粉尘粒径减小,最小点火能与粉尘质量浓度变化关系曲线向低粉尘质量浓度和低点火能量方向偏移,且对应的最敏感爆炸质量浓度从500 g/m~3降至200 g/m~3。随粉尘质量浓度增加,过147μm、74μm、47μm孔径筛的苯乙烯丙烯酸共聚物/碳黑混合体系粉尘爆炸压力及爆炸压力上升速率呈现先增加后减小趋势。在相同粉尘质量浓度下,中位径小于74μm的苯乙烯丙烯酸共聚物/碳黑混合体系粉尘,粉尘的爆炸压力增幅明显减小。苯乙烯丙烯酸共聚物/碳黑混合体系粉尘爆炸下限质量浓度为25 g/m~3,最大爆炸指数为14.636 MPa·m/s,爆炸危险等级划分为St1。  相似文献   

7.
为了解橡胶粉尘的爆炸危险性,采用20 L球爆炸测试装置对常温常压下、粒径75μm以下的橡胶粉尘在质量浓度50~700 g/m3范围内的爆炸特性进行试验研究,测定其最大爆炸压力及爆炸指数随质量浓度的变化规律,进而对其爆炸危险性程度进行分级。结果表明:橡胶粉尘质量浓度为300 g/m3时,爆炸压力达到最大值0.49MPa;在橡胶粉尘质量浓度为250 g/m3时,爆炸指数达到最大值5.04MPa·m/s,根据ISO 6184粉尘爆炸烈度等级分级标准,其粉尘爆炸危险性分级为St-1级。  相似文献   

8.
为研究玉米淀粉粉尘爆炸危险性,采用哈特曼管式爆炸测试装置和20 L球爆炸测试装置对200目(<75μm)以下的玉米淀粉粉尘爆炸危险性进行评估,基于静电火花和粉尘质量浓度对粉尘爆炸的影响,对玉米淀粉的静电火花最小点火能量、爆炸下限质量浓度、最大爆炸压力和爆炸指数进行了研究,根据试验结果对玉米淀粉爆炸危险性进行分级。试验结果表明:温度在25℃,喷粉压力为0.80 MPa,粉尘质量浓度在250~750 g/m3范围内,粉尘的最小点火能量随着粉尘质量浓度增加而降低,其最小点火能量在40~80 mJ之间;在点火能量为10 kJ时,粉尘爆炸下限质量浓度在50~60 g/m3之间;在粉尘质量浓度为750 g/m3时,爆炸压力达到最大,为0.66 MPa;在粉尘质量浓度为500 g/m3时,爆炸指数达到最大,为17.21 MPa.m/s,其粉尘爆炸危险性分级为Ⅰ级。  相似文献   

9.
生产上,可以被氧化的粉尘如煤粉、化纤粉、金属粉、面粉、木粉、棉、麻、毛等,在一定条件下均能发生着火或爆炸.因此,粉尘爆炸的危险性广泛存在于冶金、石油化工、煤炭、轻工、能源、粮食、医药、纺织等行业.以下是几起比较典型的粉尘爆炸事故.  相似文献   

10.
11.
This work aims to help improve the electrostatic safety design and explosion prevention of medical facilities. In this study, the minimum ignition energies (MIEs) of Florfenicol, Tilmicosin and mixtures of Florfenicol and Tilmicosin at ratios of 1:1, 1:2, 2:1 and 1:4 were measured in a Hartmann apparatus. The results demonstrated that the MIEs for Florfenicol, Tilmicosin and mixtures of Florfenicol and Tilmicosin at ratios of 1:1, 1:2, 2:1 and 1:4 are 200, 70, 180, 150, 200 and 110 mJ, respectively. Tilmicosin is more sensitive to static electricity, which is more dangerous than the other two powders examined in this paper. Furthermore, the MIEs of the mixtures are proportional to the Florfenicol content. For all powders, the MIE first decreased with the powder mass and later reached its minimum value. In addition, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) were used to investigate the morphological specificity and thermal decomposition of the powders to elucidate the parameters governing the powder explosions further.  相似文献   

12.
The global increase in the use of, and reliance on, plastics has prompted the demand for acrylonitrile-butadiene-styrene (ABS) resin in various fields. With this increased requirement, numerous failures have occurred in the ABS process. Those incidents, resulting from electrostatic discharge, powder accumulation, heat accumulation, construction sparks, and plant fires, have caused dust fire and explosions.In this study, the ABS resin was gleaned from the site and tested for its explosion parameters, including minimum ignition temperature of dust cloud (MITC), minimum ignition energy (MIE), and minimum explosion concentration (MEC). To improve loss prevention in the manufacturing process, ferric oxide (Fe2O3) as an inert additive was added in the ABS powder. According to the MIE test, Fe2O3 has an apparent inhibiting effect on dust explosion for the ABS dust. With the proportion of Fe2O3 increased from 25 to 50 mass% in ABS, the MIE increased from 67 to 540 mJ. The explosion tests via 20-L apparatus indicated that Fe2O3 mixed with ABS could not increase the MEC significantly. However, the explosion pressure dropped by increasing in the ratio of Fe2O3 in ABS. This inerting strategy of ABS was deemed to substantially lessen the probability and severity of fire and explosion.  相似文献   

13.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

14.
Lower explosion limits of hybrid fuel mixtures are usually determined through time consuming and expensive experiments. Although, mathematical expressions like Le-Chatelier's Law and Bartknecht curve have been used by many researchers to predict the LEL of hybrid mixtures, significant deviations remain unexplained. This research work, presents a more sophisticated and general approach for the determination of LEL of hybrid mixtures.Assuming that the combustion kinetics of pure species are independent and unchanged by the presence of other combustible species, complete conversion of the reactants and no heat losses, a simple mathematical model has been derived from the enthalpy balance of the whole system. For the experimental validation of the modelled values, modified version of 20L sphere has been employed, following the European standard (EN 14034-3: 2011) as experimental protocol. Hybrid mixtures of three dusts with two gases were selected for the scope of this publication. By analyzing the modelled as well as the experimental values, it can be concluded that the LEL values of the individual components in the hybrid mixture set the upper and lower limit for the LEL of the hybrid mixture provided the total amount of fuel in the system is considered as the concentration of the hybrid mixture. Moreover, the amount of dust or gas required to render the hybrid mixture flammable mainly depends on the energy contribution upon combustion of the individual species to raise the temperature of the whole system from ambient to the flame temperature.Le-Chatelier's Law and Bartknecht curve are empirical relations, which might hold true for a first-order approximation of LEL of hybrid mixtures, but do not represent the most conservative values of LEL reported in literature. This implies that there is a non-zero probability of occurrence of an explosible mixture in the non-explosible concentrations ranges defined by these relations. Considering these arguments, the authors suggest to employ the model presented in this paper – which presents reasonably conservative values of LEL of hybrid mixtures – for theoretical calculation of LEL of hybrid mixtures, when no precise experimental data is available.  相似文献   

15.
The prevention of dust explosions is still a challenge for the process industry. Ignition, in particular, is a phenomenon that is still not completely understood. As a consequence, safety conditions pertaining to ignition suppression are rarely identified to an adequate level. It is well known that, in general, the ignition attitude of a dust depends on several factors, such as the nature of the chemical, the particle size, moisture content, etc., but there is still a lack of knowledge on the effect of the single variables.This paper has the aim of providing data on the Minimum Ignition Temperatures of dust mixtures obtained from a mixing of a combustible dust (flour, lactose, sucrose, sulphur) and an inert dust (limestone, extinguishing powders) as well as from the mixing of two different combustible dusts. Various mixtures with different weight ratios have been tested in a Godbert Greenwald (GG) furnace and on a hot plate in order to measure the effect of mixture composition on the Minimum Ignition Temperature (MITL) of the layer and on the Minimum Ignition Temperature (MITC) of the cloud. In order to further verify the effects of inert dust particle size, inerts sieved to different size ranges have been tested separately. Generally, both MITL and MITC increase as the inert content is increased. MITC is poorly affected by inert particle size when limestone is used. The MITL of pure flour is higher than the MITL of mixtures containing up to 40% of 32–75 μm of limestone. This was probably due to the behaviour of pure flour during the test, which demonstrated strong tendency to produce char, cracks in the layer and detachment from the hot plate.  相似文献   

16.
This paper presents a numerical model for the prediction of the minimum ignition temperature (MIT) of dust clouds. First, a physical model is developed for the dust cloud ignition in the Godbert-Greenwald furnace. A numerical approach is then applied for the MIT prediction based on the physical model. The model considers heat transfer between the air and dust particles, the dust particle reaction kinetics, and the residence times of dust clouds in the furnace. In general, for the 13 dusts studied, the calculated MIT data are in agreement with the experimental values. There is also great accordance between the experimental and numerical MIT variation trends against particle size. Two different ignition modes are discovered. The first one consists in ignition near the furnace wall for bigger particles characterized by rather short residence times. In the second mode, the ignition starts from the center of the furnace by self-heating of the dust cloud for smaller particles with longer residence times. For magnesium, as dust concentration increases, the lowest ignition temperature of the dust cloud IT(conc) decreases first, then transits to increase at a certain point. The transition happens at different dust concentrations for different particle sizes. Moreover, the MIT of the magnesium dust cloud generally increases as particle size increases, but the increasing trend stagnates within a certain medium particle size range.  相似文献   

17.
In this study, a physical model of the dust cloud ignition process is developed for both cylindrical coordinates with a straight-line shaped ignition source and spherical coordinates with a point shaped ignition source. Using this model, a numerical algorithm for the calculation of the minimum ignition energy (MIE) is established and validated. This algorithm can evaluate MIEs of dusts and their mixtures with different dust concentrations and particle sizes. Although the average calculated cylindrical MIE (MIEcylindrical) of the studied dusts only amounts to 63.9% of the average experimental MIE value due to reasons including high idealization of the numerical model and possible energy losses in the experimental tests, the algorithm with cylindrical coordinates correctly predicts the experimental MIE variation trends against particle diameter and dust concentration. There is a power function relationship between the MIE and particle diameter of the type MIE ∝ dpk with k being approximately 2 for cylindrical coordinates and 3 for spherical coordinates. Moreover, as dust concentration increases MIE(conc) first drops because of the decreasing average distance between particles and, at fuel-lean concentrations the increasing dust cloud combustion heat; however, after the dust concentration rises beyond a certain value, MIE(conc) starts to increase as a result of the increasingly significant heat sink effect from the particles and, at fuel-rich concentrations the no longer increasing dust cloud combustion heat.  相似文献   

18.
粉尘云最小点火温度测试实验系统设计   总被引:2,自引:0,他引:2  
通过对Godbert -Greenwald恒温炉分析与改造 ,设计了粉尘云最小点火温度实验装置 ,并建立了相应的测试系统。调试结果表明 ,该实验系统扬尘均匀性、温控精度及结果可重复性能良好  相似文献   

19.
采用LDA及特殊粉尘测试系统测定了RMS紊流度、流速及粉尘浓度,在标准的1m3容器和12m3筒仓中进行的实验表明,12m3筒仓中的粉尘浓度与1m3的数值相同,而1m3容器的RMS紊流度竖直分量(经0.6s,RMS=5m/s)比12m3筒仓的值约高出2.5倍;若采用机械喷粉,则紊流度约高出10倍。  相似文献   

20.
Accidental electrostatic sparks in industrial plant producing/handling powders/dusts occur whenever a non-earthed electrically conducting object has been charged tribo-electrically to a high voltage and suddenly discharges its energy to earth via an air gap of appropriate length. When assessing the electrostatic spark ignition hazard in an industrial plant, the parameters of prime concern are the capacitances C of electrically conducting plant items that may become charged tribo-electrically, the voltages U to which they may become charged, and the minimum electric spark ignition energies (MIE) of the dust clouds of concern. Whenever , there is a possibility of accidental electrostatic spark ignition.

Current standard apparatuses for determining MIE of dust clouds have a lower spark energy limit of 2–3 mJ. In an investigation by the present authors, discussed in detail elsewhere, a new spark generator capable of producing synchronized capacitive sparks of energies down to the order of 0.01 mJ was developed and used for testing a selection of ignition-sensitive powders for MIE. Several of the MIEs found were 1–2 orders of magnitude lower than the lower energy limit of current standard test apparatus. Other experiments by the present authors, also reported elsewhere, have shown that quite low MIEs can be found for some dusts even with a less optimal synchronization mechanism, which may occur accidentally in practice.

The main object of the present paper is to discuss possible practical concerns arising from the finding that clouds in air of some dusts can have very low MIEs. In such cases, one may have to pay attention to even minor C values, i.e. minor plant items. Alternatively, with larger C values, even quite low voltages may give rise to hazardous spark discharges.

However, some types of fine metal powders of low MIEs will quite readily form electrically conductive layers on the solid surfaces with which they make contact. Hence, electrostatic spark ignition inside process equipment containing such dusts may be less probable than in the case of process equipment containing non-conducting dusts of correspondingly low MIEs.

There may be a need for a new standard test method for determination of MIEs of dust clouds in the <1 mJ range.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号