首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

2.
Brown PM 《Ecology》2006,87(10):2500-2510
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Ni?as, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Ni?o, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.  相似文献   

3.
Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased precipitation due to climatic change. Restoration plans should consider the potential impact on long-term forest productivity of greater N losses from a more open N cycle, especially during the period immediately after thinning and burning.  相似文献   

4.
Heyerdahl EK  Morgan P  Riser JP 《Ecology》2008,89(3):705-716
Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to existing tree-ring reconstructions of climate (temperature and the Palmer Drought Severity Index [PDSI]) and large-scale climate patterns that affect modern spring climate in this region (El Ni?o Southern Oscillation [ENSO] and the Pacific Decadal Oscillation [PDO]). We identified 32 regional-fire years as those with five or more sites with fire. Fires were remarkably widespread during such years, including one year (1748) in which fires were recorded at 10 sites across what are today seven national forests plus one site on state land. During regional-fire years, spring-summers were significantly warm and summers were significantly warm-dry whereas the opposite conditions prevailed during the 99 years when no fires were recorded at any of our sites (no-fire years). Climate in prior years was not significantly associated with regional- or no-fire years. Years when fire was recorded at only a few of our sites occurred under a broad range of climate conditions, highlighting the fact that the regional climate drivers of fire are most evident when fires are synchronized across a large area. No-fire years tended to occur during La Ni?a years, which tend to have anomalously deep snowpacks in this region. However, ENSO was not a significant driver of regional-fire years, consistent with the greater influence of La Ni?a than El Ni?o conditions on the spring climate of this region. PDO was not a significant driver of past fire, despite being a strong driver of modern spring climate and modern regional-fire years in the northern Rockies.  相似文献   

5.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

6.
Abstract:  Livestock grazing has been implicated as a cause of the unhealthy condition of ponderosa pine forest stands in the western United States. An evaluation of livestock grazing impacts on natural resources requires an understanding of the context in which grazing occurred. Context should include timing of grazing, duration of grazing, intensity of grazing, and species of grazing animal. Historical context, when and under what circumstances grazing occurred, is also an important consideration. Many of the dense ponderosa pine forests and less-than-desirable forest health conditions of today originated in the early 1900s. Contributing to that condition was a convergence of fire, climate, and grazing factors that were unique to that time. During that time period, substantially fewer low-intensity ground fires (those that thinned dense stands of younger trees) were the result of reduced fine fuels (grazing), a substantial reduction in fires initiated by Native Americans, and effective fire-suppression programs. Especially favorable climate years for tree reproduction occurred during the early 1900s. Exceptionally heavy, unregulated, unmanaged grazing by very large numbers of horses, cattle, and sheep during the late nineteenth and early twentieth centuries occurred in most of the U.S. West and beginning earlier in portions of the Southwest. Today, livestock numbers on public lands are substantially lower than they were during this time and grazing is generally managed. Grazing then and grazing now are not the same.  相似文献   

7.
The rapid increase in residential land area in the United States has raised concern about water pollution associated with nitrogen fertilizers. Nitrate (NO3-) is the form of reactive N that is most susceptible to leaching and runoff; thus, a more thorough understanding of nitrification and NO3(-) availability is needed if we are to accurately predict the consequences of residential expansion for water quality. In particular, there have been few assessments of how the land use history, housing density, and age of residential soils influence NO3(-) pools and fluxes, especially at depth. In this study, we used 1 m deep soil cores to evaluate potential net nitrification and mineralization, microbial respiration and biomass, and soil NO3(-) and NH4+ pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to eight forested reference sites with similar soils. Our results suggest that a change to residential land use has increased pools and production of reactive N, which has clear implications for water quality in the region. However, the results contradict the common assumption that NO3(-) production and availability is dramatically higher in residential soils than in forests in general. While net nitrification (128.6 +/- 15.5 mg m(-2) d(-1) vs. 4.7 +/- 2.3 mg m(-2) d(-1); mean +/- SE) and exchangeable NO3(-) (3.8 +/- 0.5 g/m2 vs. 0.7 +/- 0.3 g/m2) were significantly higher in residential soils than in forest soils in this study, these measures of NO3(-) production and availability were still notably low, comparable to deciduous forest stands in other studies. A second unexpected result was that current homeowner management practices were not predictive of NO3(-) availability or production. This may reflect the transient availability of inorganic N after fertilizer application. Higher housing density and a history of agricultural land use were predictors of greater NO3(-) availability in residential soils. If these factors are good predictors across a wider range of sites, they may be useful indicators of NO3(-) availability and leaching and runoff potential at the landscape scale.  相似文献   

8.
Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1-10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by >95%, and inadequate fire frequencies threaten many of the remnants today. In the absence of frequent fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory develops. This midstory encroachment has been the focus of much research and management concern, largely based on the assumption that the midstory reduces understory plant diversity through direction competition via light interception. The general application of this mechanism of degradation is questionable, however, because midstory density, leaf area, and hardwood species composition vary substantially along a soil moisture gradient from mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine communities suggests that the development of the forest floor, a less conspicuous change in forest structure, might cause a decline in plant biodiversity when forests remain unburned. We report here a test of the interactions among fire, litter accumulation, forest floor development, and midstory canopy density on understory plant diversity. Structural equation modeling showed that within xeric sites, forest floor development was the primary factor explaining decreased biodiversity. The only effects of midstory development on biodiversity were those mediated through forest floor development. Boundary line analysis of functional guilds of understory plants showed sensitivity to even minor development of the forest floor in the absence of fire. These results challenge the prevailing management paradigm and suggest that within xeric longleaf pine communities, the primary focus of managed fire regime should be directed toward the restoration of forest floor characteristics rather than the introduction of high-intensity fires used to regulate midstory structure.  相似文献   

9.
Fire is an important tool in the management of forest ecosystems. Although both prescribed and wildland fires are common in Turkey, few studies have addressed the influence of such disturbances on soil properties and root biomass dynamics. In this study, soil properties and root biomass responses to prescribed fire were investigated in 25-year-old corsican pine (Pinus nigra Arn.) stands in Kastamonu, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2003. Soil respiration rates were determined every two months using soda-lime method over a two-year period. Fine (0-2 mm diameter) and small root (2-5 mm diameter) biomass were sampled approximately bimonthly using sequential coring method. Mean daily soil respiration ranged from 0.65 to 2.19 g Cm(-2) d(-1) among all sites. Soil respiration rates were significantly higher in burned sites than in controls. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine root biomass was significantly lower in burned sites than in control sites. Mean fine root biomass values were 4940 kg ha(-1) for burned and 5450 kg ha(-1) for control sites. Soil pH was significantly higher in burned sites than in control sites in 15-35 cm soil depth. Soil organic matter content did not differ significantly between control and burned sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of forest stands in the study area.  相似文献   

10.
用离子交换树脂袋法,研究了鼎湖山三种森林(马尾松林、马尾松针叶阔叶混交林和季风常绿阔叶林)土壤硝态氮对外加氮的响应特征。结果表明,土壤硝态氮显著地受森林类型、季节和氮处理的影响。整体而言,阔叶林土壤硝态氮极显著高于马尾松林和混交林,而马尾松林和混交林之间的差异则不显著。三种森林土壤硝态氮的季节变化均表现为春季和夏季极显著高于冬季和秋季,而冬季又显著高于秋季。外加氮处理提高土壤硝态氮水平,其中在马尾松林和阔叶林氮处理效应显著。所得结果与直接采集土壤或土壤水测定的硝态氮含量的结果一致,表明离子交换树脂袋法是评价土壤硝态氮水平行之有效的手段之一。  相似文献   

11.
Many ponderosa pine and mixed-conifer forests of the western, interior United States have undergone substantial structural and compositional changes since settlement of the West by Euro-Americans. Historically, these forests consisted of widely spaced, fire-tolerant trees underlain by dense grass swards. Over the last 100 years they have developed into dense stands consisting of more fire-sensitive and disease-susceptible species. These changes, sometimes referred to as a decline in "forest health," have been attributed primarily to two factors: active suppression of low-intensity fires (which formerly reduced tree recruitment, especially of fire-sensitive, shade-tolerant species), and selective logging of larger, more fire-tolerant trees. A third factor, livestock grazing, is seldom discussed, although it may be as important as the other two factors. Livestock alter forest dynamics by (1) reducing the biomass and density of understory grasses and sedges, which otherwise outcompete conifer seedlings and prevent dense tree recruitment, and (2) reducing the abundance of fine fuels, which formerly carried low-intensity fires through forests. Grazing by domestic livestock has thereby contributed to increasingly dense western forests and to changes in tree species composition. In addition, exclosure studies have shown that livestock alter ecosystem processes by reducing the cover of herbaceous plants and litter, disturbing and compacting soils, reducing water infiltration rates, and increasing soil erosion.  相似文献   

12.
Biogeochemistry of a temperate forest nitrogen gradient   总被引:2,自引:0,他引:2  
Perakis SS  Sinkhorn ER 《Ecology》2011,92(7):1481-1491
Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant-soil-microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (U.S.A.). Surface mineral soil N (0-10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N.ha(-1) x yr(-1). Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for <20% of net N mineralization at low-N sites, increasing to 85-100% of net N mineralization at intermediate- and high-N sites. The ratio of net: gross N mineralization and nitrification increased along the gradient, indicating progressive saturation of microbial N demands at high soil N. Aboveground N uptake by plants increased asymptotically with net N mineralization to a peak of approximately 35 kg N.ha(-1) x yr(-1). Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.  相似文献   

13.
Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.  相似文献   

14.
15.
Studies of the long-term impacts of acidic deposition in Europe and North America have prompted growing interest in understanding the dynamics linking the nitrogen (N) and calcium (Ca) cycles in forested watersheds. While it has been shown that increasing concentrations of nitrate (NO3-) through atmospheric deposition or through nitrification can increase Ca loss, the reciprocal effects of Ca on N transformation processes have received less attention. We studied the influence of soil Ca availability on extractable inorganic N (NO3- + NH4+) across a Ca gradient in the Adirondack Mountains, New York, USA. Our results did not show the direct Ca-N interaction that we had expected, but instead showed that exchangeable Ca coupled with soil moisture, soil organic matter, and ambient temperature accounted for 61% of the variability in extractable inorganic N across 11 sites over two growing seasons. Soil Ca concentrations were, however, positively related to sugar maple (Acer saccharum) and American basswood (Tilia americana) basal areas and negatively related to American beech (Fagus grandifolia) basal area. Based on litter chemistry differences among these tree species and reported potential N mineralization values, we suggest that the influence of Ca on soil inorganic N is through a multistep pathway: reciprocal interactions between soil Ca concentrations and species composition, which in turn affect the quality of litter available for N mineralization. If chronic soil Ca depletion continues, as reported in some forested ecosystems, potential shifts in biotic communities could result in considerable alterations of N cycling processes.  相似文献   

16.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

17.
The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the importance of quantifying burn severity and controlling confounding sources of spatiotemporal variation in studies of fire effects. After-only gradient analysis can be an efficient tool for quantifying fire effects. This analysis can also augment historical data sets that have small samples sizes coupled with high non-process variation, which limits the power of before-after comparisons.  相似文献   

18.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

19.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

20.
We conducted a four-week laboratory incubation of soil from a Themeda triandra Forsskal grassland to clarify mechanisms of nitrogen (N) cycling processes in relation to carbon (C) and N availability in a hot, semiarid environment. Variation in soil C and N availability was achieved by collecting soil from either under tussocks or the bare soil between tussocks, and by amending soil with Themeda litter. We measured N cycling by monitoring: dissolved organic nitrogen (DON), ammonium (NH4+), and nitrate (NO3-) contents, gross rates of N mineralization and microbial re-mineralization, NH4+ and NO3- immobilization, and autotrophic and heterotrophic nitrification. We monitored C availability by measuring cumulative soil respiration and dissolved organic C (DOC). Litter-amended soil had cumulative respiration that was eightfold greater than non-amended soil (2000 compared with 250 microg C/g soil) and almost twice the DOC content (54 compared with 28 microg C/g soil). However, litter-amended soils had only half as much DON accumulation as non-amended soils (9 compared with 17 microg N/g soil) and lower gross N rates (1-4 compared with 13-26 microg N x [g soil](-1) x d(-1)) and NO3- accumulation (0.5 compared with 22 microg N/g soil). Unamended soil from under tussocks had almost twice the soil respiration as soil from between tussocks (300 compared with 175 microg C/g soil), and greater DOC content (33 compared with 24 microg C/g soil). However, unamended soil from under tussocks had lower gross N rates (3-20 compared with 17-31 microg N x [g soil](-1) d(-1)) and NO3- accumulation (18 compared with 25 microg N/g soil) relative to soil from between tussocks. We conclude that N cycling in this grassland is mediated by both C and N limitations that arise from the patchiness of tussocks and seasonal variability in Themeda litterfall. Heterotrophic nitrification rate explained >50% of total nitrification, but this percentage was not affected by proximity to tussocks or litter amendment. A conceptual model that considers DON as central to N cycling processes provided a useful initial framework to explain results of our study. However, to fully explain N cycling in this semiarid grassland soil, the production of NO3- from organic N sources must be included in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号