首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal objective of the current study was to elucidate the potential influence of acid mine drainage (AMD) pond on neighboring farmer's wells in the Podwi?niówka area (south-central Poland), using North American Shale Composite (NASC)-normalized rare earth element (REE) concentration profiles. The well waters generally displayed a distinctly positive Eu anomaly similar to that of parent rocks and AMD sediment. In contrast, the AMD pit pond water exhibited the typical roof-shaped NASC-normalized REE concentration pattern with a strong positive Gd anomaly. The low pH (mean of 2.9) of this pond water is induced by oxidation of pyrite that occurs in quartz veins and rocks exposed in the abandoned Podwi?niówka quarry. The principal source of REEs in turn is a crandallite series of aluminum–phosphate–sulfate (APS) minerals (gorceixite with florencite and Ce-bearing goyazite) that prevail in most clayey shales. These data indicate that the REE contents of the AMD pit pond and well waters are linked to bedrock mineralogy and lithology, but not to pyrite mineralization. The diverse REE patterns of NASC-normalized REE concentrations of the AMD and well waters may suggest complex sorption and desorption processes that occur at the rock–water interface influenced by different pH, Eh, temperature, and other factors. This is evidenced by a presence of strong positive Ce anomaly in the rocks, a lack of Ce anomaly in the AMD water and sediment, and the dominant negative anomaly of this element in the well waters. Variations in correlation coefficients (r 2) of REE concentrations between the rocks and the well waters may also result from a different contribution of quartzites, clayey shales, or tuffites to the REE signal of well waters as well as from mixing of shallow groundwater with infiltrating rainwater or meltwater with different REE profiles.  相似文献   

2.
The aim of this study was to better understand the fate of nutrients discharged by sewage treatment plants into an intermittent Mediterranean river, during a low-flow period. Many pollutants stored in the riverbed during the low-flow period can be transferred to the downstream environments during flood events. The study focused on two processes that affect the fate and the transport of nutrients, a physical process (retention in the riverbed sediments) and a biological process (denitrification). A spatial campaign was carried out during a low-flow period to characterize the nutrient contents of both water and sediments in the Vène River. The results showed high nutrient concentrations in the water column downstream of the treated wastewater disposal (up to 13,315 μg N/L for ammonium and 2,901 μg P/L for total phosphorus). Nutrient concentrations decreased rapidly downstream of the disposal whereas nutrient contents in the sediments increased (up to 1,898 and 784 μg/g for total phosphorus and Kjeldahl nitrogen, respectively). According to an in situ experiment using sediment boxes placed in the riverbed for 85 days, we estimated that the proportion of nutrients trapped in the sediments represents 25% (respectively 10%) of phosphorus (respectively nitrogen) loads lost from the water column. In parallel, laboratory tests indicated that denitrification occurred in the Vène River, and we estimated that denitrification likely coupled to nitrification processes during the 85 days of the experiment was significantly involved in the removal of nitrogen loads (up to 38%) from the water column and was greater than accumulation processes.  相似文献   

3.
Mine tailings generate significant environmental impacts and contribute to water pollution. The Central Rand goldfield, South Africa is replete with gold mine tailings which have contributed significantly to water pollution as a result of acid mine drainage (AMD). Water quality is affected by mine tailings and spillages, especially from active slimes dams, currently reprocessed tailings, as well as footprints left behind after reprocessing. The release and distribution of uranium from these sites was studied. Correlation matrices show a strong link between different variables as a result of AMD produced. Principal component analysis (PCA) was used to identify very influential variables which account for the pollution trends. Artificial neural networks (ANN) using the Kohonen algorithm were applied to visualise these trends and patterns in the distribution of uranium. High concentrations of this radionuclide were detected in streams in the vicinity of the tailings dumps, active slimes and reprocessing areas. The concentrations are reduced drastically in dams and wetlands as a result of precipitation and dilution effects.  相似文献   

4.
This study reports on the determination of trace element (TE)—Li, As, Co, Cs, Cu, Pb, U, and Zn—and major element (ME)—Si, Al, Fe, Mg, Ca, Mn, Na, and K—concentrations in 18 riverbed sediments and a sediment core from the Var River catchment using inductively coupled plasma mass spectrometry (ICP-MS). The results were compared with those of a reference sediment core, and the contribution of clay and organic carbon contents in the distribution of TE and ME in the sediment samples was investigated. The mean concentrations of the ME were comparable in both core and riverbed samples and were within the natural averages. In the case of TE, the concentrations were lower in riverbed sediment samples than those found in the sediment core. High mean concentration of As was observed (7.6 μg g?1) in both core and riverbed sediments, relatively higher than the worldwide reported values. The obtained data indicated that the natural high level of arsenic might be originated from the parent rocks, especially metamorphic rocks surrounding granites and from Permian sediments. Statistical approach, viz., Pearson correlation matrix, was applied to better understand the correlation among TE in both riverbed and sediment core samples. No significant metallic contamination was detected in the low Var valley despite of the localization of several industrial facilities. Therefore, results confirm that the concentrations of the TE obtained in the riverbed sediments could be considered as a baseline guide for future pollution monitoring program.  相似文献   

5.
This study investigates the possibility of acid mine drainage (AMD) generation in active and derelict mine waste piles in Sarcheshmeh Copper Mine produced in several decades, using static tests including acid–base accounting (ABA) and net acid-generating pH (NAGpH). In this study, 51 composite samples were taken from 11 waste heaps, and static ABA and NAGpH tests were carried out on samples. While some piles are acid producing at present and AMD is discharging from the piles, most of them do not show any indication on their AMD potential, and they were investigated to define their acid-producing potential. The analysis of data indicates that eight waste piles are potentially acid generating with net neutralization potentials (NNPs) of ?56.18 to ?199.3, net acid generating of 2.19–3.31, and NPRs from 0.18 to 0.44. Other waste piles exhibited either a very low sulfur, high carbonate content or excess carbonate over sulfur; hence, they are not capable of acid production or they can be considered as weak acid producers. Consistency between results of ABA and NAGpH tests using a variety of classification criteria validates these tests as powerful means for preliminary evaluation of AMD/ARD possibilities in any mining district. It is also concluded that some of the piles with very negative NNPs are capable to produce AMD naturally, and they can be used in heap leaching process for economic recovery of trace amounts of metals without applying any biostimulation methods.  相似文献   

6.
The Ely Creek watershed (Lee County, VA) was determined in 1995 to be the most negatively affected by acid mine drainage (AMD) within the Virginia coalfield. This determination led the US Army Corps of Engineers to design and build passive wetland remediation systems at two major AMD seeps affecting Ely Creek. This study was undertaken to determine if ecological recovery had occurred in Ely Creek. The results indicate that remediation had a positive effect on all monitoring sites downstream of the remediated AMD seeps. At the site most impacted by AMD, mean pH was 2.93 prior to remediation and improved to 7.14 in 2004. Benthic macroinvertebrate surveys revealed that one AMD influenced site had increased taxa richness from zero taxa in 1997 to 24 in 2004. While in situ testing of Asian clams resulted in zero survival at five of seven AMD influenced sites prior to remediation, some clams survived at all sites after. Clam survival was found to be significantly less than upstream references at only two sites, both downstream of un-mitigated AMD seeps in 2004. An ecotoxicological rating (ETR) system that combined ten biotic and abiotic parameters was developed as an indicator of the ecological status for each study site. A comparison of ETRs from before and after remediation demonstrated that all sites downstream of the remediation had experienced some level of recovery. Although the remediation has improved the ecological health of Ely Creek, un-mitigated AMD discharges are still negatively impacting the watershed.  相似文献   

7.
The Ely Creek watershed (Lee County, VA) was determined in 1995 to be the most negatively affected by acid mine drainage (AMD) within the Virginia coalfield. This determination led the US Army Corps of Engineers to design and build passive wetland remediation systems at two major AMD seeps affecting Ely Creek. This study was undertaken to determine if ecological recovery had occurred in Ely Creek. The results indicate that remediation had a positive effect on all monitoring sites downstream of the remediated AMD seeps. At the site most impacted by AMD, mean pH was 2.93 prior to remediation and improved to 7.14 in 2004. Benthic macroinvertebrate surveys revealed that one AMD influenced site had increased taxa richness from zero taxa in 1997 to 24 in 2004. While in situ testing of Asian clams resulted in zero survival at five of seven AMD influenced sites prior to remediation, some clams survived at all sites after. Clam survival was found to be significantly less than upstream references at only two sites, both downstream of un-mitigated AMD seeps in 2004. An ecotoxicological rating (ETR) system that combined ten biotic and abiotic parameters was developed as an indicator of the ecological status for each study site. A comparison of ETRs from before and after remediation demonstrated that all sites downstream of the remediation had experienced some level of recovery. Although the remediation has improved the ecological health of Ely Creek, un-mitigated AMD discharges are still negatively impacting the watershed.  相似文献   

8.
Acid mine drainage (AMD) often exerts various environmental pressures on nearby water courses: chemical stress from low pH and dissolved metals; physical stress from metal oxide deposits. Affected streams can thus display a spatially variable combination of stress agents that may complicate its biomonitoring using native communities such as periphyton. Here, we have measured water and periphyton variables in four streams that surround an abandoned copper mine to determine which periphyton attributes consistently detected AMD impact in a complex environmental setting. Seventeen years after the end of commercial exploitation, the abandoned mine still decreases water quality in nearby streams: moderate acidification, very high metal load (Al, Ni, Cu, Zn), and a conspicuous presence of metal oxide deposits with diverse composition. Even under the resultant complex pattern of polluted conditions, periphyton was a reliable bioindicator of AMD. Epilithic diatom taxa tolerant of acidic conditions increased in AMD sites and, at severely impacted locations, species richness decreased. Also, algal biomass may have been negatively affected in some stream reaches affected by metal oxide deposits. Other periphyton attributes (total biomass, diatom diversity) seemed mostly unrelated to AMD. Diatom assemblage composition was the most sensitive and consistent bioindicator of mine drainage; besides, it rendered a biological assessment of AMD impact that largely coincided with the physicochemical evaluation. Still, including other taxonomic (proportion of acid-tolerant diatom species, diatom richness) and non-taxonomic (algal biomass) attributes in the biomonitoring procedure rendered a more comprehensive assessment of the negative consequences generated by AMD.  相似文献   

9.
Ecological health of 15 sites in two mining areas on the West Coast of the South Island, New Zealand, was assessed using a non-invasive electrophysiological technique. The conduction velocity (CV) changes in the medial giant fibres (MGF) of the terrestrial earthworm Aporrectodea caliginosa were measured on days 0, 1, 2, 4, 7, 14, and 21 following exposure to soil and/or sediment from six acid mine drainage (AMD) sites, and aquatic oligochaete Lumbriculus variegatus at 0, 3, 6, and 24 h following exposure to water from 14 AMD sites. The colour of the soil/sediments varied from red-brown to black with pH ranging from 4.46 to 7.37. The colour of AMD water samples varied from clear, black, brown to orange, and the pH ranged from 2.99 to 7.66. The CV decreased progressively in A. caliginosa exposed to most soil and sediment samples from the AMD sites (compared with controls exposed to soil from an organic farm) and this was most evident in measurements taken at 7 days. Based on the CV measurements taken on day 7, sites 3 > 2 > 1 were significantly (P < 0.05) the most toxic to earthworms. The CV of L. variegatus exposed to AMD water sampled from many sites also decreased progressively and this was significantly lower than the controls in the measurements taken at 24 h from sites 3 > 9 > 7 > 11. It is proposed that MGF CV in A. caliginosa and L. variegatus worms can be used as a non-invasive, sensitive, biomarker to monitor the toxicity of AMD sites.  相似文献   

10.
Urban rivers are natural elements in the urban landscape that are technologically changed to solve flood and pollution problems, and as a result of these interventions in the riverbed, they can be sources of well-being or problems for different segments of a city's population. As such, alternatives for assessment from different temporal and spatial viewpoints are necessary. Here we examine the importance of an urban river which has been technologically transformed over time, through the perception of families who live alongside it. Historical background was initially used to provide context, followed by binary logistic regression to analyze survey data (stratified sample of 710 inhabitants, significance level = 0.05). The results show that perceptions varied by the type of riverbed where each respondent lived (straightened, natural, or underground) and how long residents had lived near the river, and that the technologies used influence perceptions of impacts on the quality of life in riverside populations. The findings of this study provide possibilities for evaluating urban rivers as assets that generate diffuse effects capable of intensively impacting the quality of life of various residents in different ways, with intensities moderated by the nature of the corrective technologies used in each segment of the river, as well as priorities for conservation policies developed in each community or riverside micro-society. The conclusion is that high-impact technological solutions tended to be highly effective, and despite the ongoing deterioration of water quality and escalating risk, part of the population continues to value the river as a public natural resource and believes that solutions should come from government efforts.  相似文献   

11.
The behavioral responses of guppy Poecilia reticulata (Poeciliidae) and prawn Macrobrachium lanchesteri (Palaemonidae) individuals exposed to acid mine drainage (AMD) were monitored online in the laboratory with a Multispecies Freshwater Biomonitor? (MFB). These responses were compared to those to reference water acidified to the respective pH values (ACID). Test animals in the juvenile stage were used for both species and were exposed to AMD and ACID for 24 hours. The stress behaviors of both test animals consisted mainly of decreased activity in AMD and increased activity in ACID, indicating that the metals in the AMD played a role as a stress factor in addition to pH. The locomotor activity levels of guppies and prawns for the ACID treatment were higher than the locomotor activity levels for the AMD treatment with increasing pH value. For guppies, significant differences were observed when specimens were exposed to AMD and ACID at pH 5.0 and 6.0; the percentage activities were only 16% and 12%, respectively, for AMD treatment, whereas for ACID treatment, the percentage activities were 35% and 40%, respectively, similar to the value of 36% for the controls. Similar trends were also observed for prawns, for which the percentage activities were only 6% and 4%, respectively, for AMD treatment, whereas for ACID treatment, the percentage activities were 31% and 38%, respectively, compared to 44% in the controls. This study showed that both species are suitable for use as indicators for ecotoxicity testing with the MFB.  相似文献   

12.
13.
In this paper, the pattern of groundwater level fluctuations is investigated by statistical techniques for 24 monitoring wells located in an unconfined coastal aquifer in Sfax (Tunisia) for a time period from 1997 to 2006. Firstly, a geostatistical study is performed to characterize the temporal behaviors of data sets in terms of variograms and to make predictions about the value of the groundwater level at unsampled times. Secondly, multivariate statistical methods, i.e., principal component analysis (PCA) and cluster analysis (CA) of time series of groundwater levels are used to classify groundwater hydrographs regard to identical fluctuation pattern. Three groundwater groups (A, B, and C) were identified. In group “A,” water level decreases continuously throughout the study periods with rapid annual cyclic variation, whereas in group “B,” the water level contains much less high-frequency variation. The wells of group “C” represents a steady and gradual increase of groundwater levels caused by the aquifer artificial recharge. Furthermore, a cross-correlation analysis is used to investigate the aquifer response to local rainfall and temperature records. The result revealed that the temperature is more affecting the variation of the groundwater level of group A wells than the rainfall. However, the second and the third groups are less affected by rainfall or temperature.  相似文献   

14.
Acid mine drainage (AMD) is a global problem that may have serious human health and environmental implications. Laboratory and field tests are commonly used for predicting AMD, however, this is challenging since its formation varies from site-to-site for a number of reasons. Furthermore, these tests are often conducted at small-scale over a short period of time. Subsequently, extrapolation of these results into large-scale setting of mine sites introduce huge uncertainties for decision-makers. This study presents machine learning techniques to develop models to predict AMD quality using historical monitoring data of a mine site. The machine learning techniques explored in this study include artificial neural networks (ANN), support vector machine with polynomial (SVM-Poly) and radial base function (SVM-RBF) kernels, model tree (M5P), and K-nearest neighbors (K-NN). Input variables (physico-chemical parameters) that influence drainage dynamics are identified and used to develop models to predict copper concentrations. For these selected techniques, the predictive accuracy and uncertainty were evaluated based on different statistical measures. The results showed that SVM-Poly performed best, followed by the SVM-RBF, ANN, M5P, and KNN techniques. Overall, this study demonstrates that the machine learning techniques are promising tools for predicting AMD quality.  相似文献   

15.
The role of forest stand density in controlling soil erosion was investigated in Ehime Prefecture, Japan. The main objective was to compare soil erosion under different forest conditions including forest type, species composition, and stand density as influenced by thinning operations. Relative yield index (Ry) was used as an indicator of stand density to reflect the degree of management operations in the watershed. Eleven treatments were established based on the above forest conditions. Soil loss was collected in each of the 11 treatments after each rainfall event for a period of 1 year. The paper presents summary data on soil loss as affected by forest conditions and rainfall patterns. Findings showed that an appropriate forest management operation, which can be insured by stand density control, is needed to reduce soil loss. The present study plays an important role in clarifying technical processes related to soil erosion, while it helps linking these elements to current Japanese forestry issues and bringing new inputs to reducing sediment-related disasters in Japan.  相似文献   

16.
Negligence to consider the spatial variability of rainfall could result in serious errors in model outputs. The objective of this study was to examine the uncertainty of both runoff and pollutant transport predictions due to the input errors of rainfall. This study used synthetic data to represent the “true” rainfall pattern, instead of interpolated precipitation. It was conducted on a synthetic case area having a total area of 20 km2 with ten subbasins. Each subbasin has one rainfall gauge with synthetic precipitation records. Six rainfall storms with varied spatial distribution were generated. The average rainfall was obtained from all of the ten gauges by the arithmetic average method. The input errors of rainfall were induced by the difference between the actual rainfall pattern and estimated average rainfall. The results show that spatial variability of rainfall can cause uncertainty in modeling outputs of hydrologic, which would be transport to pollutant export predictions, when uniformity of rainfall is assumed. Since rainfall is essential information for predicting watershed responses, it is important to consider the properties of rainfall, particularly spatial rainfall variability, in the application of hydrologic and water quality models.  相似文献   

17.
To study desertification processes relating to soil erosion, a climatological and altitudinal gradient from south to north was selected in Crete (Greece) and four locations were selected along the gradient. At the locations precipitation ranged from 1400 mm/year at the highest location to 400 mm/year at the lowest. All locations are affected by the actual land use: intensive grazing, small controlled fires, and abandoned agricultural terraces. Representative soil profiles were described in the field and analyzed in the laboratory, and rainfall simulation experiments in the field measured soil erosion over different soil surfaces and land uses. Data on physical and chemical properties were obtained from the soil profiles and soil hydrology, and erosion data were obtained from the rainfall simulation experiments. Soil aggregation was studied with samples taken from the soil in the rainfall simulation plots and special attention being paid to the aggregate size distribution and the water-stable microaggregation. The interaction between climatological conditions and land use seems to be the main factor controlling soil erosion. This paper describes how the expected erosion along the gradient (from the most humid to the driest site) can be affected and disturbed by specific processes derived from land use.  相似文献   

18.
Sulphide-bearing mine dumps are potential sources of pollution when acid mine drainage (AMD) occurs. Because the generation of AMD depends on the volume and composition of waste materials, their characterisation is crucial for the evaluation of geochemical hazards and for the design of remediation strategies to minimise their environmental impact. In this paper, a cost-effective strategy for the characterisation of an inactive mine dump in the Rio Marina mining district (Elba Island, Italy) using earth resistivity imaging (ERI) is presented. As no information regarding the nature of waste rocks is found in reports for the mine, five ERI profiles were acquired at the top of the waste pile. The results show that waste rocks are heterogeneous with a maximum thickness of 30 m. Due to the large amounts of dispersed sulphide minerals, the waste rocks are characterised by an electrically conductive geophysical signature in comparison to the surrounding resistive metamorphic bedrock. A geostatistical approach was adopted to estimate the elevation of the edges of the mine dump, and the net volume of the waste rocks was computed through a raster analysis of the elevations of the upper and lower boundaries of the mine dump. High-conductivity anomalies were detected within the core of the mine dump. The integration of the hydrogeological, geochemical and geological framework of the Rio Marina mining district suggests that these anomalies could be a geophysical signature of subsurface regions where AMD is currently generated or stored, thus representing sources of environmental pollution.  相似文献   

19.
Acid mine drainage (AMD) is a common result of coal and metal mining worldwide caused by weathering of metal sulfides exposed during mining. AMD typically results in low-pH, high-metal, high-conductivity water that does not support aquatic life. Chemical water quality improvement does not necessarily lead to rapid biological recovery. Little Raccoon Creek, a major tributary to Raccoon Creek in the Western Allegheny Plateau of Ohio, drains 401 km2, has a legacy of AMD that stems from mining activities over more than a century. Since 1999, seven major passive treatments systems have been installed in the watershed to a total of over $6.5 million. This study analyzes the hourly water quality data collected at a United States Geological Survey gage station alongside trends in fish and macroinvertebrate communities. Both fish and macroinvertebrate communities have shown a statistically significant improvement in the lower reaches of Little Raccoon Creek since treatment began. Long-term chemical monitoring shows a significant increase in pH, but no significant change in conductivity. The conductivity data is well correlated with sulfate concentrations and discharge, while the pH is well correlated with net  alkalinity data, but not with discharge. Significant investment in passive treatment systems and land reclamation has decreased the percent occurrence of pH measurements below the target of 6.5 and has led to recovery of both fish and macroinvertebrate communities in the downstream reaches of Little Raccoon Creek. Long-term monitoring has proven to be a valuable tool to assess success of a high-cost remediation program.  相似文献   

20.
Road-deposited sediment (RDS) is an important environmental medium for impacting the characteristics of pollutants in stormwater runoff; it is of critical importance to investigate the water quality of urban environments. The paper develops a rainfall simulator as an important research tool to ensure homogeneity and reduce the large number of variables that are usually inherent to urban water quality research. The rainfall simulator was used to experiment runoff samples from typical residential and traffic areas in the Zhenjiang. The data show that land use is one of the major factors contributing to the difference in the pollutants concentration in the RDS. The maximum mean EMC for TN, TDN, TP, and TDP at residential area was 5.52, 3.07, 1.65, and 0.36 mg/L, respectively. The intense traffic area displayed the highest metal concentrations. Concentrations of runoff pollutants varied greatly with land use and storm characteristics. The correlation of pollutant concentrations with runoff times was another predominant phenomenon. Peaks in pollutants concentration occurred at 1 and 10 min during the whole storm event. A concentration peak that correlates with a peak in runoff flowrate correlates with rainfall intensity. The pollutant loadings (kilograms per hectare) in the Zhenjiang were 11.39 and 55.28 for COD, 8.42 and 57.48 for SS, 0.11 and 0.88 for TN, 0.02 and 0.14 for TP, 0.02 and 0.09 for Zn, and 0.01 and 0.04 for Pb. The higher rainfall contribute to the higher pollutant loading at the residential and intense traffic areas, as a result of the pollutant loadings direct dependence on rainfall intensity. The results confirmed that the rainfall simulator is a reliable tool for urban water quality research and can be used to simulate pollutant wash-off. These findings provide invaluable information for the development of appropriate management strategies to decrease nonpoint source contamination loading to the water environment in urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号