首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many base load onshore LNG plants use large number of Air-Fin-Coolers normally mounted on the center pipe rack of the LNG process train. Further, the LNG plant modularized approach requires large, complex structures (modules) for supporting the LNG process equipment and for allowing sea and land transportation. This results in additional congestion of the plant and large voids under module-deck, which are confined by large girders. Thus, in case of leaks, the proper ventilation to reduce the accumulation of gas is critical for the safety of the plant.This paper evaluates the Air-Fin-Cooler induced air flow in modularized LNG plants using Computational Fluid Dynamics (CFD) analysis.The results of this evaluation show that the ventilation of the Air-Fin-Cooler induced air flow is influenced by the process train orientation. Further, a moderate increase is observed in specific design conditions or areas, such as shorter separation distances between modules. Based on the results of this evaluation, four design measures are proposed to optimize the use of Air-Fin-Cooler, such as train orientation against prevailing wind direction and use of the grating deck material.  相似文献   

2.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   

3.
Computational fluid dynamics (CFD) simulations have been conducted for dense gas dispersion of liquefied natural gas (LNG). The simulations have taken into account the effects of gravity, time-dependent downwind and crosswind dispersion, and terrain. Experimental data from the Burro series field tests, and results from integral model (DEGADIS) have been used to assess the validity of simulation results, which were found to compare better with experimental data than the commonly used integral model DEGADIS. The average relative error in maximum downwind gas concentration between CFD predictions and experimental data was 19.62%.The validated CFD model was then used to perform risk assessment for most-likely-spill scenario at LNG stations as described in the standard of NFPA 59A (2009) “Standard for the Production, Storage and Handling of Liquefied Natural Gas”. Simulations were conducted to calculate the gas dispersion behaviour in the presence of obstacles (dikes walls). Interestingly for spill at a higher elevation, e.g., tank top, the effect of impounding dikes on the affected area was minimal. However, the impoundment zone did affect the wind velocity field in general, and generated a swirl inside it, which then played an important function in confining the dispersion cloud inside the dike. For most cases, almost 75% of the dispersed vapour was retained inside the impoundment zone. The finding and analysis presented here will provide an important tool for designing LNG plant layout and site selection.  相似文献   

4.
While the effect of the safety gap on explosions is well known, little has been carried out to evaluate the effect of the safety gap on dispersion of gas releases, this paper evaluates the effect of safety gap on gas dispersion for a cylindrical Floating Liquefied Natural Gas (FLNG) vessel. The realistic ship-shaped and circular FLNG platforms are established and used for the detailed CFD based analysis; rather than the structural and hydrodynamics advantages of mobility, stability and cost efficiency etc., this study aims to investigate the safety of gas dispersion on the cylindrical FLNG and compare the safety gap effects on different configurations. A series of different safety gap configurations are evaluated for gas dispersion occurring in near field for the traditional FLNG while both near field and far field gas dispersion simulations are conducted on the cylindrical one. The overall results indicate that the safety gap is effective in reducing the gas cloud size in both FLNG configurations, however, when it comes to the gas dispersion in the far field against the leakage point, the safety gap increases the gas cloud size in the cylindrical FLNG vessel on the contrary.  相似文献   

5.
Ignition of natural gas (composed primarily of methane) is generally not considered to pose explosion hazards when in unconfined and low- or medium-congested areas, as most of the areas within LNG regasification facilities can typically be classified. However, as the degrees of confinement and/or congestion increase, the potential exists for the ignition of a methane cloud to result in damaging overpressures (as demonstrated by the recurring residential explosions due to natural gas leaks). Therefore, it is prudent to examine a proposed facility’s design to identify areas where vapor cloud explosions (VCEs) may cause damage, particularly if the damage may extend off site.An area of potential interest for VCEs is the dock, while an LNG carrier is being offloaded: the vessel hull provides one degree of confinement and the shoreline may provide another; some degree of congestion is provided by the dock and associated equipment.In this paper, the computational fluid dynamics (CFD) software FLACS is used to evaluate the consequences of the ignition of a flammable vapor cloud from an LNG spill during the LNG carrier offloading process. The simulations will demonstrate different approaches that can be taken to evaluate a vapor cloud explosion scenario in a partially confined and partially congested geometry.  相似文献   

6.
The use of LNG (liquefied natural gas) as fuel brings up issues regarding safety and acceptable risk. The potential hazards associated with an accidental LNG spill should be evaluated, and a useful tool in LNG safety assessment is computational fluid dynamics (CFD) simulation. In this paper, the ADREA-HF code has been applied to simulate LNG dispersion in open-obstructed environment based on Falcon Series Experiments. During these experiments LNG was released and dispersed over water surface. The spill area is confined with a billboard upwind of the water pond. FA1 trial was chosen to be simulated, because its release and weather conditions (high total spill volume and release rate, low wind speed) allow the gravitational force to influence the cold, dense vapor cloud and can be considered as a benchmark for LNG dispersion in fenced area. The source was modeled with two different approaches: as vapor pool and as two phase jet and the predicted methane concentration at sensors' location was compared with the experimental one. It is verified that the source model affect to a great extent the LNG dispersion and the best case was the one modeling the source as two phase jet. However, the numerical results in the case of two phase jet source underestimate the methane concentration for most of the sensors. Finally, the paper discusses the effect of neglecting the ?9.3° experimental wind direction, which leads to the symmetry assumption with respect to wind and therefore less computational costs. It was found that this effect is small in case of a jet source but large in the case of a pool source.  相似文献   

7.
Critical formulae given in the current Explosive Atmospheres Hazardous Area Classification Standard IEC 60079-10-1 (2008) [BS EN 60079-10-1, 2009] to determine the expected gas cloud volume which is used to determine area classification do not have any scientific justification. The standard does allow the alternative use of Computational Fluid Dynamics (CFD) methods, which serve to compound the concern with these formulae: the predicted volume of the gas cloud from CFD models being several orders of magnitude smaller than that given by the formulae in question. To resolve such major discrepancies, replacement of the current formulae with a scientifically validated approach is proposed. Integral models of dispersion and ventilation have been used routinely for many years in the analysis of major hazards in the chemical industry. This paper presents an adaptation of these models to determine the expected volume of a gas cloud arising from a release of gas from a pressurised source. A very simple integral jet model is presented for outdoor dispersion, extended to the case of indoor dispersion, from which the volume of the gas cloud is derived. The single free parameter, an entrainment coefficient, is fixed by comparison with data on a free jet, and then predictions of the model are compared with CFD calculations (which themselves have been validated against experimental data) for dispersion within an enclosed volume. The results of this simple integral model are seen to agree very well with the CFD predictions. The methodology presented here is therefore proposed as a scientifically validated approach to Hazardous Area Classification.  相似文献   

8.
The siting of facilities handling liquefied natural gas (LNG), whether for liquefaction, storage or regasification purposes, requires the hazards from potential releases to be evaluated. One of the consequences of an LNG release is the creation of a flammable vapor cloud, that may be pushed beyond the facility boundaries by the wind and thus present a hazard to the public. Therefore, numerical models are required to determine the footprint that may be covered by a flammable vapor cloud as a result of an LNG release. Several new models have been used in recent years for this type of simulations. This prompted the development of the “Model evaluation protocol for LNG vapor dispersion models” (MEP): a procedure aimed at evaluating quantitatively the ability of a model to accurately predict the dispersion of an LNG vapor cloud.This paper summarizes the MEP requirements and presents the results obtained from the application of the MEP to a computational fluid dynamics (CFD) model – FLACS. The entire set of 33 experiments included in the model validation database were simulated using FLACS. The simulation results are reported and compared with the experimental data. A set of statistical performance measures are calculated based on the FLACS simulation results and compared with the acceptability criteria established in the MEP. The results of the evaluation demonstrate that FLACS can be considered a suitable model to accurately simulate the dispersion of vapor from an LNG release.  相似文献   

9.
The use of computational fluid dynamics (CFD) models to simulate LNG vapor dispersion scenarios has been growing steadily over the last few years, with applications to LNG spills on land as well as on water. Before a CFD model may be used to predict the vapor dispersion hazard distances for a hypothetical LNG spill scenario, it is necessary for the model to be validated with respect to relevant experimental data. As part of a joint-industry project aimed at validating the CFD methodology, the LNG vapor source term, including the turbulence level associated with the evaporation process vapors was quantified for one of the Falcon tests.This paper presents the method that was used to quantify the turbulent intensity of evaporating LNG, by analyzing the video images of one of the Falcon tests, which involved LNG spills onto a water pond. The measured rate of LNG pool growth and spreading and the quantified turbulence intensity that were obtained from the image analysis were used as the LNG vapor source term in the CFD model to simulate the Falcon-1 LNG spill test. Several CFD simulations were performed, using a vaporization flux of 0.127 kg/m2 s, radial and outward spreading velocities of 1.53 and 0.55 m/s respectively, and a range of turbulence kinetic energy values between 2.9 and 28.8 m2/s2. The resulting growth and spread of the vapor cloud within the impounded area and outside of it were found to match the observed behavior and the experimental measured data.The results of the analysis presented in this paper demonstrate that a detailed and accurate definition of the LNG vapor source term is critical in order for any vapor cloud dispersion simulation to provide useful and reliable results.  相似文献   

10.
Effective safety measures to prevent and mitigate the consequences of an accidental release of flammable LNG are critical. Water spray curtain is currently recognized as an effective technique to control and mitigate various hazards in the industries. It has been used to absorb, dilute and disperse both toxic and flammable vapor cloud. It is also used as protection against heat radiation, in case of fighting vapor cloud fire. Water curtain has also been considered as one of the most economic and promising LNG vapor cloud control techniques. Water curtains are expected to enhance LNG vapor cloud dispersion mainly through mechanical effects, dilution, and thermal effects. The actual phenomena involved in LNG vapor and water curtain interaction were not clearly established from previous research. LNG spill experiments have been performed at the Brayton Fire Training Field at Texas A&M University (TAMU) to understand the effect of water curtain in controlling and dispersing LNG vapor cloud. This paper summarizes experimental methodology and presents data from two water curtain tests. The analysis of the test results are also presented to identify the effectiveness of these two types of water spray curtains in enhancing the LNG vapor cloud dispersion.  相似文献   

11.
Installation of effective safety measures to prevent and mitigate an accidental LNG release is critical. Water curtains are usually inexpensive, simple and reliable and currently have been recognized as an efficient technique to control and mitigate various hazards in the process industries including LNG industry. Actions of a water spray consist of a combination of several physical mechanisms. Detailed analysis of the complex mechanisms and the effects of water spray features to control and mitigate potential LNG vapor cloud are still unclear. This paper discusses the experimental research conducted by MKOPSC to study the physical phenomena involved and the effect of different types of water curtains parameters when applied for LNG vapor. The data from medium scale out-door experiments at the Brayton Fire Training School (BFTF), Texas, are summarized here to understand the relative importance of induced mechanical mixing effects, dilution with air, and heat transfer between water droplets and the LNG vapor. Field test results have determined that water curtains can reduce the concentration of the LNG vapor cloud. Due to the water curtain mechanisms of entrainment of air, dilution of vapor with entrained air, transfer of momentum and heat to the gas cloud, water curtain can disperse LNG vapor cloud to some extent.  相似文献   

12.
Liquefied natural gas (LNG) is widely used to cost-effectively store and transport natural gas. However, a spill of LNG can create a vapor cloud, which can potentially cause fire and explosion. High expansion (HEX) foam is recommended by the NFPA 11 to mitigate the vapor hazard and control LNG pool fire. In this study, the parameters that affect HEX foam performance were examined using lab-scale testing of foam temperature profile and computational fluid dynamics (CFD) modeling of heat transfer in vapor channels. A heat transfer model using ANSYS Fluent® was developed to estimate the minimum HEX foam height that allows the vapors from LNG spillage to disperse rapidly. We also performed a sensitivity analysis on the effect of the vaporization rate, the diameter of the vapor channel, and the heat transfer coefficient on the required minimum height of the HEX foam. It can be observed that at least 1.2 m of HEX foam in height are needed to achieve risk mitigation in a typical situation. The simulation results can be used not only for understanding the heat transfer mechanisms when applying HEX foam but also for suggesting to the LNG facility operator how much HEX foam they need for effective risk mitigation under different conditions.  相似文献   

13.
为定量分析半封闭空间内液化天然气(LNG)泄漏后果,利用计算流体力学(CFD)软件FLUENT,对不同条件下的“冷箱”内LNG泄漏后扩散与爆炸过程进行了模拟。结果表明:无论通风与否,危险区域(甲烷体积分数为5%~15%)一直存在,但通风时该区域比无通风时小; LNG泄漏后会导致箱内温度降低,且泄漏量越大温度下降越低,但通风在一定程度上能减小温降; 当危险区域最大时,发生爆炸产生的超压最大,对于泄漏量小的情况,通风能减小爆炸压力; 障碍物的存在会增大爆炸压力,研究中的最大爆炸超压为158 kPa,可对设备与人员造成严重危害,故在设计“冷箱”时须提出相应的强度要求。研究方法与结果对于与“冷箱”类似的受限空间安全设计与风险评估有指导意义。  相似文献   

14.
This study presents two methodologies which can be used to determine the classification and extended area of hazardous zones caused by gas, vapours and mists. The first is based on UNE 60079/10/1: Electrical apparatus for explosive gas atmospheres – Part 10: Classification of hazardous areas, whilst the second is developed on the basis of Computational Fluid Dynamics (CFD) using the FLUENT software application. Both methodologies were applied in the same case study of differing leakage components from a dairy farm steam boiler room fuelled by liquid natural gas (LNG).The results obtained show that CFD methodology is a powerful tool with a significant capacity for determining the size of an explosive atmosphere for a broad range of exhaust sources. This methodology offers more conservative results than those obtained from the analytical methodology recommended in Standard UNE 60079/10/1. Results obtained using CFD are more useful in enabling the study of turbulence phenomena, boundaries, and diverse initial and contour conditions.In contrast, the Standard UNE 60079/10/1 methodology is less conservative and aims at determining the hypothetical volume Vz of the explosive atmosphere. This volume is a measurement of the ventilation efficiency which is in turn proportional to a massive gas release through an exhaust source divided by the number of air changes in the enclosed area.From the results obtained, it can be confirmed that Standard UNE 60079/10/1 should be revised.  相似文献   

15.
More than thirty-five years ago, the Bhopal disaster shook the whole world and investigators found out that many people survived just because they turned on the fans in their bedrooms. It was postulated that the forced ventilation played an important role in diluting the toxic gas and saved these people. In order to provide evidence to solve this old mystery, this research employed FLACS software to assess the hazardous degree of a toxic gas (hydrogen sulfide) leakage within a petrochemical process. Series of gas dispersion simulations were performed to actualize the hazardous characteristics and the corresponding risks of the release accident. The study shows that the hazardous level and the hazard range can be greatly influenced when parameters, such as the gas leakage circumstances (atmospheric conditions and wind speed) and the mitigation measures (direction of fans and their speed) are altered.By using explosion-proof fans in different positions and ventilation directions, combined with the natural wind in a certain direction, this research attempts to detect the best combination from various mitigation designs and to compare the influence of fan directions on hazard mitigation. It is also the first time of its kind to simulate the effect of forced ventilation on hazard mitigation within a process plant. The results show that the hazardous level of a toxic release can be effectively alleviated, when the direction of the mechanical ventilation is against the natural wind direction. With the help of the CFD simulation and the quantitative risk analysis technique, different loss prevention strategies can be tested via this method in order to establish a safer working environment.  相似文献   

16.
为了评价在开阔水面上的液化天然气(LNG)火灾和蒸气云爆炸灾害后果,分析了LNG水面扩展动态过程;对比分析了Fay模型、FERC模型和计算流体力学软件FLACS的计算结果,探讨了LNG液池面积随时间的动态变化过程,分析了泄漏量、泄漏速率等参数对LNG液池扩展半径的影响;根据液池扩展模型的计算结果,确定了LNG液池的最大面积,并以此分析了LNG流淌火灾的辐射危害。研究结果表明:对于相同的泄漏条件,3种方法模拟的泄漏LNG水面扩展动态过程相似,一般情况下,FLACS模型,FERC模型和Fay模型所计算的最大液池半径依次增大;由于FERC模型与FLACS软件的模拟结果接近且偏于保守,故此在一般的工程应用时,采用FERC模型即可方便快捷地获得较为准确的结果。  相似文献   

17.
The evaluation of exclusion (hazard) zones around the LNG stations is essential for risk assessment in LNG industry. In this study, computational fluid dynamics (CFD) simulations have been conducted for the two potential hazards, LNG flammable vapor dispersion and LNG pool fire radiation, respectively, to evaluate the exclusion zones. The spatial and temporal distribution of hazard in complex spill scenario has been taken into account in the CFD model. Experimental data from Falcon and Montoir field tests have been used to validate the simulation results. With the valid CFD model, the mitigation of the vapor dispersion with spray water curtains and the pool fire with high expansion foam were investigated. The spray water curtains were studied as a shield to prevent LNG vapor dispersing, and two types of water spray curtain, flat and cone, were analyzed to show their performance for reduction and minimization of the hazard influencing distance and area. The high expansion foam firefighting process was studied with dynamic simulation of the foam action, and the characteristics of the foam action on the reduction of LNG vaporization rate, vapor cloud and flame size as well as the thermal radiation hazard were analyzed and discussed.  相似文献   

18.
深埋地铁防排烟设计研究   总被引:2,自引:0,他引:2  
地铁深埋敷设减少了对路面交通、高层建筑的影响,减少了房屋拆迁量,改善区间施工条件,但同时也对地铁站点的通风、排烟设计的安全性提出了更高的要求。文章结合广州市地铁6号线线路深埋敷设条件,对多层结构深埋车站的通风排烟系统设计进行了探讨,同时采用火灾动力学模型分别对深埋车站站台火灾、列车火灾进行了数值模拟,进而验证了防排烟设计的有效性。研究表明,深埋车站排烟系统的设计方案可以在扶梯开口处形成至少1.5m/s的向下流速;发生站台行李火灾和车站列车火灾时,排烟系统可以有效地控制烟气不向站厅蔓延,确保火灾时的站台层以上区域为无烟区和安全区;疏散楼梯间可保持微正压和无烟气进入;深埋车站排烟系统可以保证火灾时的人员可用安全疏散时间ASET大于6分钟。文章结论可为国内外类似深埋车站排烟系统提供参考。  相似文献   

19.
This study aims to provide the approach for inherent safety design of onshore LNG plants to be applied at the very early stages (concept definition phase) of the project development. Onshore LNG plant development project starts from the “Concept Definition” phase, where financial feasibility is estimated and major conditions, such as site location and plant foot print, are set.The inherent safety design basic criteria and design measures should be identified and selected when setting the basic conditions during the Concept Definition phase of the project development, such as the site location (relative location from populated areas), site condition (prevailing wind direction) and plant production capacity (number of process train, number of product tanks). The safety measures, which are usually not fully developed at the project early stages in the current design execution practices, are the emergency systems, which mitigate an accident escalation, the modularized plant and layout, and the tank selection.The inherent safety design measures discusses in this paper were identified based on the categories of plot plan, emergency system, and module plant application.The proposed approach will contribute to improve inherent safety design of onshore LNG plants and it will also yield schedule and cost benefits.  相似文献   

20.
A methodology to perform consequence analysis associated with liquefied natural gas (LNG) for a deepwater port (DWP) facility has been presented. Analytical models used to describe the unconfined spill dynamics of LNG are discussed. How to determine the thermal hazard associated with a potential pool fire involving spilled LNG is also presented. Another hazard associated with potential releases of LNG is the dispersion of the LNG vapor. An approach using computational fluid dynamics tools (CFD) is presented. The CFD dispersion methodology is benchmarked against available test data. Using the proposed analysis approach provides estimates of hazard zones associated with newly proposed LNG deepwater ports and their potential impact to the public.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号