首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper shows the results of our investigations on the ignition source ultrasound in dust-air atmospheres. Ultrasound is, on the one hand, considered to be an ignition source according to international safety standards (EN 1127–1 (2011)). On the other hand, though, ultrasound is used for various applications in gases and air, such as level and flow measurement, or in the process industry, but no explosion accidents have yet been reported. Our research now shows that it is indeed possible to ignite dust-air mixtures in ultrasound fields under certain conditions. We conducted our experiments in an ultrasound standing wave field and used maize starch, calcium stearate and sulfur dust. For ignitions, an absorbing target was needed to convert the acoustic energy into heat. From theoretical estimations and experiments critical conditions that provoke ultrasonically triggered explosions are identified.  相似文献   

2.
Fiber optic systems are being deployed in locations where explosive gas atmospheres are normally present or are present under fault conditions. The National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory (NIOSH, PRL) conducted a study of laser safety in potentially flammable environments. Researchers conducted experiments to estimate the mean and standard deviation of laser powers needed to ignite 6% methane–air atmospheres using single mode optical fiber tips covered by two types of iron oxide (Fe3O4 and (FeMn)2O3) mixed with a ceramic adhesive. The iron oxides, heated by a 1064 nm continuous wave laser, ignited the methane–air mixtures at similar powers. The minimum igniting power and maximum non-igniting power (10 tests) were 407 and 350 mW, respectively, using a 62.5 μm fiber. Laser beams guided by 125 and 80 μm diameter cladding single mode fibers produced similar methane–air igniting powers. Ignition was not observed using coal particles at powers that produced ignition with the iron oxides. Threshold ignition delays using the single mode fiber were approximately proportional to the inverse square of the igniting power. Ignition delays were significantly longer than the reported activation time for a commercial fiber optic power limiter. Comparisons are made with the results of other researchers.  相似文献   

3.
When metal alloys are used as mechanical equipment or tools in explosive atmospheres, the occurrence and incendivity of mechanically generated sparks as ignition sources should be taken into consideration. The formation of mechanically generated sparks was investigated for seven metals, including Q235 steel, 304 stainless steel, TC4 titanium alloy, 6061 aluminum alloy, H62 bronze alloy, AMAK3 zinc alloy, and AZ31B magnesium alloy. The relationship between the physical-chemical properties and generation and incendivity of friction sparks was evaluated. For 6061 aluminum alloy, H62 bronze alloy, AMAK3 zinc alloy, and AZ31B magnesium alloy, no bright friction sparks were observed in the maximum friction velocity of 12 m/s and maximum surface pressure of 3.75 N/mm2, because of low hardness, high thermal conductivity, low melting point, and the absence of carbon content. Ignition testing indicated that nano titanium dust layers with MIEL (minimum ignition energy of dust layer) of 1 mJ were not ignited by friction particles from the four metal alloys. However, bright particles were clearly observed for 304 stainless steel, Q235 steel, and TC4 titanium alloy. Friction sparks at the maximum power densities showed incendivity with micro titanium layers having an MIEL of 17.5–25 mJ but not with PMMA, corn starch, and wood dust having MIELs greater than 1 J. Two different particle burning behaviors with different fragmentation mechanisms during the friction process were determined, namely the micro explosion phenomenon for TC4 titanium alloy and particle burst for Q235 steel. Results indicate that the physical-chemical properties of friction metal rods are useful for preliminary evaluation of spark generation. Powder layers with known MIEL can be considered as indicator testing materials to evaluate spark incendivity.  相似文献   

4.
Explosibility of polyurethane dusts produced in the recycling process of refrigerator and the ways to prevent the dust explosion were studied. In recent years, cyclopentane is often used as the foaming agent and this produces explosive atmosphere in the shredding process. The minimum explosive concentration of polyurethane dust, influence of coexisting cyclopentane gas on the explosibility, effect of relative humidity on the minimum explosive concentration of polyurethane dusts, the minimum ignition energy, influence of cyclopentane mixture on the explosion severity, etc. were investigated.The minimum explosive dust concentration decreased with the increase of cyclopentane concentration and increased with the increase of relative humidity. The minimum ignition energy was about 11 mJ. The ignition energy decreased with the increase of the cyclopentane gas concentration. The cyclopentane gas concentration up to about 5300 ppm did not influence too much on the explosion index (Kst) and maximum explosion pressure. From these, it would be a good way to increase the relative humidity and to regulate the cyclopentane concentration in the shredding process to prevent the dust explosion hazard.  相似文献   

5.
The flammability envelope was experimentally determined up to the point of vapor saturation for four flammable liquids: methanol, ethanol, acetonitrile, and toluene. The experimental apparatus consisted of a 20-L spherical chamber with a centrally located 10 J fuse wire igniter. The liquid was injected and vaporized into the chamber via a septum and a precision syringe. Nitrogen and oxygen were mixed from pure components using a precision pressure gauge. Pressure versus time data were measured for each ignition test. Flammability was defined as any ignition resulting in an increase in pressure of 7% over the initial pressure, as per ASTM E 918–83. All data were obtained at an initial temperature of 298 K and 1 atm. The experimental values of the LFL agreed well with published values. Limiting oxygen concentrations (LOC) were also determined—although these were somewhat lower than published values.The calculated adiabatic flame temperature (CAFT) method was used to model the data using a threshold temperature of 1200 K. A reasonable fit of the flammability envelope was obtained, although this could be improved with a higher threshold temperature.  相似文献   

6.
Safety and health of workers potentially being at risk from explosive atmospheres are regulated by separate regulations (ANSI/AIHA in USA and ATEX in the European Union). The ANSI/AIHA does not require risk assessment whereas it is compulsory for ATEX. There is no standard method to do that assessment. For that purpose we have applied the explosion Layer of Protection Analysis (ExLOPA), which enables semi-quantitative risk assessment for process plants where explosive atmospheres occur. The ExLOPA is based on the original work of CCPS for LOPA taking into account an explosion accident scenario at workplace. That includes typical variables appropriate for workplace explosion like occurrence of the explosive atmosphere, the presence of effective ignition sources, activity of the explosion prevention and mitigation independent protection layers as well as the severity of consequences. All those variables are expressed in the form of qualitative linguistic categories and relations between them are presented using expert based engineering knowledge, expressed in the form of appropriate set of rules. In this way the category of explosion risk may be estimated by the semi-quantitative analysis. However, this simplified method is connected with essential uncertainties providing over or under estimation of the explosion risk and may not provide real output data.In order to overcome this problem and receive more detailed quantitative results, the fuzzy logic system was applied. In the first stage called fuzzification, all linguistic categories of the variables are mapped by fuzzy sets. In the second stage, the number of relation between all variables of analysis are determined by the enumerative combinatorics and the set of the 810 fuzzy rules “IF-THEN” is received. Each rule enables determination of the fuzzy risk level for a particular accident scenario. In the last stage, called defuzzification, the crisp value of final risk is obtained using a centroid method. The final result of the risk presents a contribution of each risk category represented by the fuzzy sets (A, TA, TNA and NA) and is therefore more precise and readable than the traditional approach producing one category of risk only. Fuzzy logic gives a possibility of better insights into hazards and safety phenomena for each explosion risk scenario. It is not possible to receive such conclusions from the traditional ExLOPA calculation results. However it requires the application of computer-aided analyses which may be partially in conflict with a simplicity of ExLOPA.The practical example provides a comparison between the traditional results obtained by ExLOPA and by fuzzy ExLOPA methods.  相似文献   

7.
The hazardous sludge disposal process in the form of landfills requires the determination inter alia of the flammable and explosion properties of dried sewage sludge dust, which has the ability to ignite and spontaneously combust when stored in silos. At a constant furnace surface temperature, the minimum ignition temperature of the sludge dust layer with a layer thickness of 5 mm is 270 °C, and for a layer thickness of 12.5 mm it is 250 °C. Two selected fire extinguishing powders for Class A, B, C and D fires were used in the study to determine the possibility of reducing the susceptibility of dried wastewater to ignition from heated surface, self-ignition and explosion parameters. The most effective extinguishing powder was ABC Favorit, which increased the value of the minimum ignition temperature of the layer (5 mm thick) to 360 °C and the spontaneous ignition temperature of the sludge with this powder increased by 22 °C at 169.6 cm3 in comparison to the sludge without extinguishing powder, respectively. The lowest self-ignition temperature of 136 °C was recorded for the largest tested volume (169.6 cm3) for dried sewage dust without any fire extinguishing powders. The biggest values of pmax and (dp/dt)max dried sewage dust were recorded 4.8 bar and 113 bar/s respectively. By analysing the obtained test results, it can be assumed that dried sewage dust is a combustible material with properties similar to biomass.  相似文献   

8.
To prevent high density polyethylene (HDPE) dust explosions, this study evaluated HDPE's explosive sensitivity characteristics, and comparatively examined two inert dust types (CaCO3 and NaHCO3) to mitigate the explosive sensitivity of HDPE dust. In the serials of experiments, the 1.2 L Hartmann tube and Godbert-Greenwald furnace were used respectively to measure the minimum ignition energy (MIE) and minimum ignition temperature (MIT) of HDPE dust. The findings demonstrated that the MIE and MIT of HDPE are 56.8 mJ and 320 °C under the most sensitive situation. Second, both CaCO3 and NaHCO3 can inhibit the explosive sensitivity of HDPE with the variation of several parameters (i.e., quality percentage and particle sizes). Specially, as the quality percentage of 38–48 μm NaHCO3 come to 70%, the HDPE/NaHCO3 will not be explosive. Finally, NaHCO3 had a better inerting effect than CaCO3 in the reduction of explosive sensitivity of HDPE.  相似文献   

9.
In this study, the dependence of the flammable concentration on particle size is investigated for Phase Change Material (PCM) and Encapsulated Phase Change Material (EPCM) particles using a novel continuous particle dispersion apparatus into which a propane flame is introduced creating a test akin to the flash-point test for liquids. The results show that the threshold concentration is a strong function of particle size. For tested particles with size ranging from 290 μm to 750 μm, the threshold concentration is above the predictions based on an instantaneous heat transfer limit, and is approximately linear with the particle size, following a heat transfer limited ignition model. For sizes above ≈1 mm, the particles behave like the bulk material, and ignition is not observed for the concentrations tested. The results obtained here are important for the safe construction, handling, and operation of systems using PCM and other particles.  相似文献   

10.
This work presents the results of the experimental characterization of the ignition sensitivity of solid inertant/combustible powders mixtures. Three inert solids (alumina, Kieselguhr, aerosil) and eleven organic powders have been considered and the following parameters have been determined: (1) the minimum ignition energy, (2) the minimum ignition temperature in cloud and (3) the minimum ignition temperature in 5 mm layer. The effects of the addition of inert solids are described and a simple model is proposed to represent the experimental results.Generally, increasing inert solid content in a powder leads to a higher minimum ignition energy as well as a higher minimum ignition temperatures in cloud and in layer. In some cases, the flammability is influenced above a threshold concentration value, which can be quite high (up to 85 wt.%). Indeed, the proposed model shows a zone below the minimum ignition concentration (MIC), which does not enable an efficient or safe inerting: either the admixed inert solid does not provide a sufficient effect, or it can even facilitate the ignition of the dust by notably improving its dispersability.The influence of key parameters such as the thermal conductivity or optical properties on the efficiency of the inerting by admixed solid need to be further assessed in a future work in view to better understand the mechanisms involved and to extend the scope to other types of oxidizable materials.  相似文献   

11.
The risk assessment of combustible explosive dust is based on the determination of the probability of dust dispersion, the identification of potential ignition sources and the evaluation of explosion severity. It is achieved in most of cases with the two main experimental normalized devices such as the Hartmann tube (spark ignition) and the 20 L spherical bomb (with two 5 kJ pyrotechnic ignitors).Ignition energy of the 5 kJ ignitor is well calibrated and generates a reproducible ignition. But, on the other hand, this ignition is not punctual and the over pressure produced is nearly 2 bar. Moreover, the pyrotechnic igniter accelerates the combustion with multi ignition points in a large volume and that disturbs the flame propagation. In this way, this ignition source does not allow to analyze the combustion products because the composition of the pyrotechnic igniter was found in the combustion products.This paper deals with the comparison of two ignition sources in the 20 L spherical bomb. Different explosive dusts of great industrial interest are studied with electrical and pyrotechnic ignitors, in order to understand, first, the influence of each type of igniter on the explosion behaviour and then to evaluate the possibility of establishing a correspondence between parameters obtained with these two ignition sources.Severity parameters of nicotinic acid, aluminium powder and titanium alloy were measured by using the two types of ignition system in our 20 L spherical bomb equipped with the Kühner dihedral injector. The explosion overpressure P and the rate of pressure rise (dPdt) were measured in a large range of concentration allowing to propose correlations between electrical and pyrotechnic ignition for each parameter and each type of powder. These correlations aim to link the tests used with two different collections of experimental parameters for the same dust. The relevance of these correlations will be discussed.  相似文献   

12.
In this work, the effect of spatial distribution and values of the turbulent kinetic energy on the pressure-time history and then on the explosion parameters (deflagration index and maximum pressure) was quantified in both the standard vessels (20 L and 1 m3).The turbulent kinetic energy maps were computed in both 20 L and 1 m3 vessels by means of CFD simulations with validated models. Starting from these maps, the turbulent flame propagation of cornstarch was calculated, by means of the software CHEMKIN. Then, the pressure-time history was evaluated and from this, the explosion parameters.Calculations were performed for three cases: not uniform turbulence level as computed from CFD simulations, uniform turbulence level and equal to the maximum value, uniform profile and equal to the minimum value. It was found that the cornstarch in the 20 L vessel get variable classes (St-1, St-2, St-3) with respect to the 1 m3 (St-1). However, simulations performed on increasing the ignition delay time, shown that the same results can be attained only using 260 ms as ignition delay time in the 20 L vessel.  相似文献   

13.
This paper presents the explosion parameters of corn dust/air mixtures in confined chamber. The measurements were conducted in a setup which comprises a 5 L explosion chamber, a dust dispersion sub-system, and a transient pressure measurement sub-system. The influences of the ignition delay on the pressure and the rate of pressure rise for the dust/air explosion have been discussed based on the experimental data. It is found that at the lower concentrations, the explosion pressure and the rate of pressure rise of corn dust/air mixtures decrease as the ignition delay increases from 60 ms; But at the higher concentrations, the explosion pressure and the rate of pressure rise increase slightly as the ignition delay increases from 60 ms to 80 ms, and decrease beyond 80 ms. The maximum explosion pressure of corn dust/air mixtures reaches its highest value equal to 0.79 MPa at the concentration of 1000 gm−3.  相似文献   

14.
The key objective of this paper is the presentation of a new risk assessment tool for underground coal mines based on a simplified semi-quantitative estimation and assessment method.In order to determine the risk of explosion of any work process or activity in underground coal mines it is necessary to assess the risk. The proposed method is based on a Risk Index obtained as a product of three factors: frequency of each individual scenario Pucm, associated severity consequences Cucm and exposure time to explosive atmospheres Eucm. The influence of exposure time is usually not taken into account up to now. Moreover, the exposure to explosive atmospheres may affect factors of hazardous event probability as much as its consequences. There are many definitions of exposure to explosive atmospheres but in the case of underground coal mines the exposure is defined as frequency risk of firedamp and coal dust. The risk estimation and risk assessment are based on the developed of a risk matrix.The proposed methodology allows not only the estimation of the explosion risk but also gives an approach to decide if the proposal investment is well-justified or not in order to improve safety.  相似文献   

15.
Explosion characteristics of micron- and nano-size magnesium powders were determined using CSIR-CBRI 20-L Sphere, Hartmann apparatus and Godbert-Greenwald furnace to study influence of particle size reduction to nano-range on these. The explosion parameters investigated are: maximum explosion pressure (Pmax), maximum rate of pressure-rise (dP/dt)max, dust explosibility index (KSt), minimum explosible concentration (MEC), minimum ignition energy (MIE), minimum ignition temperature (MIT), limiting oxygen concentration (LOC) and effect of reduced oxygen level on explosion severity. Magnesium particle sizes are: 125, 74, 38, 22, 10 and 1 μm; and 400, 200, 150, 100, 50 and 30 nm. Experimental results indicate significant increase in explosion severity (Pmax: 7–14 bar, KSt: 98–510 bar·m/s) as particle size decreases from 125 to 1 μm, it is maximum for 400 nm (Pmax: 14.6 bar, KSt: 528 bar·m/s) and decreases with further decrease of particle size to nano-range 200–30 nm (Pmax: 12.4–9.4 bar, KSt: 460–262 bar·m/s) as it is affected by agglomeration of nano-particles. MEC decreases from 160 to 30 g/m3 on decreasing particle size from 125 to 1 μm, its value is 30 g/m3 for 400 and 200 nm and 20 g/m3 for further decrease in nano-range (150–30 nm). MIE reduces from 120 to 2 mJ on decreasing the particle size from 125 to 1 μm, its value is 1 mJ for 400, 200, 150 nm size and <1 mJ for 50 and 30 nm. Minimum ignition temperature is 600 °C for 125 μm magnesium, it varies between 570 and 450 °C for sizes 38–1 μm and 400–350 °C for size range 400–30 nm. Magnesium powders in nano-range (30–200 nm) explode less violently than micron-range powder. However, likelihood of explosion increases significantly for nano-range magnesium. LOC is 5% for magnesium size range 125–38 μm, 4% for 22–1 μm, 3% for 400 nm, 4% for 200, 150 and 100 nm, and 5% for 50 and 30 nm. Reduction in oxygen levels to 9% results in decrease in Pmax and KSt by a factor of 2–3 and 4–5, respectively, for micron as well as nano-sizes. The experimental data presented will be useful for industries producing or handling similar size range micron- and nano-magnesium in order to evaluate explosibility of their magnesium powders and propose/design adequate safety measures.  相似文献   

16.
Potentially incendiary electrical apparatus for use in the presence of explosive gas atmospheres have to be specially designed to prevent the apparatus from igniting the gas. Flameproof design is one of several options, and one requirement is then that any holes and gaps in the enclosure wall be designed to prevent a gas explosion inside the enclosure from being transmitted to an explosive gas cloud outside it. Current standards (IEC) require that flame gap surfaces have a surface roughness of <6.3 μm. Any damaged flame gap surface has to be restored to this quality. The present investigation has demonstrated that flame gap surfaces in flameproof electrical apparatuses can suffer considerable corrosive and mechanical damage without any reduction of gap performance. In some cases very significant mechanical surface damage in fact improves gap performance. Possible physical reasons for this are discussed. These findings indicate that current high costs of repairing and replacing flameproof electrical apparatus in process plants offshore and onshore can be significantly reduced without any increase of explosion risks.  相似文献   

17.
The use of Coloured powder (Holi powder orcolour dust) has been largely used in India for their festivities. Due to their popularity is extensive around the world since the popularity of the parties and events with this kind of show is increasing considerably. Despite the fact of its extensive use, its highly flammable nature is poorly known. Currently, some serious accidents related to the Coloured powder have been registered. Coloured powder organic nature implies a significant increase in the probability to form an explosive atmosphere as their use includes dust dispersion, leading to explosion hazards as has been previously reported. Moreover, it is important to take into account the effects on the flammability of the additives and the colorings existing in the Coloured powder as they might increase the hazard. To properly understand Coloured powder potential for producing an explosive atmosphere, and the attached risk of dust explosions, several samples were tested. Coloured powder from 6 different manufacturers were gathered. Each manufacturer provided several colours (between 5 and 8) which were characterized through moisture content and particle size determination. Once each sample was characterized, screening tests were performed on each sample determining whether ignition was produced or not. Those screening tests were carried out under certain conditions using the equipment for minimum ignition temperature on cloud determination (0.5 g set at 500 °C and 0.5 bar), and minimum ignition energy determination (using 100 and 300 mJ energies and 900 and 1200 mg). From those test results, important differences were seen between manufacturers, but most important, differences between colours of the same manufacturer were observed. The screening tests allowed the selection of 11 samples that were fully characterized through thermogravimetric analysis, maximum pressure of explosion, Kst, minimum ignition temperature on cloud, and minimum ignition energy. When carrying out thermogravimetric analysis, some samples increased mass at temperatures close to 300 °C and unexpectedly absorbed energy, followed by the expected combustion reaction at higher temperatures. From the obtained results it was noticed that the colour powders that included talcum in its composition did not produce explosion. Flammability and explosion tests, again, showed important differences between manufacturers and colours, and so it was possible to determine the relative flash fire and explosion risks of the various tested powders.  相似文献   

18.
Fireworks are widely used in festivals around the world, but the safety issue during preparation the manufacture, storage, and operation of pyrotechnics has also been highly valued. Human operation error and insufficient recognition of the safety characteristics of pyrotechnics are the main factors in pyrotechnic incidents in Taiwan. This study considers thermal and explosion safety by electrostatic sensitivity, minimum ignition temperature, and explosion characteristics of propellant dust in commercial multi-tube pyrotechnics. The results show that propellant dust is not sensitive to static electricity, but it was ignited at 260 °C environment temperature. The lower explosion limit of propellant dust was 125–150 g/m3, which provided an effective control of the dust concentration in the workplace. It was also found that the explosive level of the propellant dust belonged to St-1, which is exceptionally close to St-2 explosion influence, and that cannot be ignored. The high temperature associated with the explosion reminded that after the firework is launched, it should be cooled before leaving. Combining the above results, this research suggests the environmental operation temperature and dust concentration should be controlled within a safer range to effectively avoid the occurrence of dust fire or explosion and substantially enhance the safety of the pyrotechnic industry.  相似文献   

19.
After the 2011 Tohoku earthquakes, several chemical and oil complexes on the Pacific Ocean shoreline of northeast Japan experienced massive losses. In Chiba, a refinery operated by Cosmo Oil lost 17 LPG storage vessels which were either heavily damaged or totally destroyed by fires and explosions in the refinery. These large vessels ranged in size from 1000 to 5000 m3. The estimated volume of LPG at the time of the incident was between 400 and 5000 m3 for each vessel. Five boiling liquid expanding vapor explosions (BLEVEs) of LPG occurred, resulting in huge fire balls measuring about 500 m in diameter.A BLEVE is defined as the explosive release of expanding vapor and boiling liquid when a container holding a pressure-liquefied gas fails catastrophically. It is thus important to estimate the physical properties of superheated liquids: the thermodynamic and transport properties, the intrinsic limits to superheating and depressurization, and the nature of thermodynamic paths. Also it is hoped to provide better understanding of the vessels designed, manufactured, installed, and operated to reduce or eliminate the probability that a sequence of events will result in BLEVE or loss of primary containment. Knowledge of these matters is still incomplete. The objective of this research is to estimate the significant BLEVE phenomenon in very large scale spherical vessels based on published information in Japan. There are some models predicting BLEVEs. However, it is essential to know if this is true for very large scales such as spheres since validation is usually rare to provide confidence in estimating the superheated liquids behaviors. To this end, comparing with the information on this event, the conditions in the five LPG vessels at the time of the BLEVE were determined in terms of: duration of vessel failure (time to BLEVE); mass fraction in the vessel with time; temperature distribution in the liquid and vapor region and pressure within the vessel (e.g. initial pressure and internal high-speed transient pressure during failure), by means of a computer program AFFTAC Analysis of Fire Effects on Tank Cars, which solves heat conduction, stress and a failure model of the tank, a thermodynamic model of its fluid contents, and a flow model for the lading flowing through the safety relief device. Subsequently, the consequences from the sphere BLEVE, such as the expected fireball diameter and duration and the expected blast overpressure produced by the BLEVE failures, are also subjects of active research. Here the blast using the methods of PHAST and SFPE Handbook of Fire Protection Engineering was calculated.Results suggest that methodologies here used gave reasonable estimations for such real and huge BLEVEs in a validated way, which may provide valuable guidance for risk mitigation strategy with regard to LPG facility in design, emergency planning, resiliency, operations, and risk management.  相似文献   

20.
Current standard test methods for electric-spark minimum ignition energies (MIEs) of dust clouds in air require that a series inductance of at least 1–2 mH be included in the electric-spark discharge circuit. The reason is to prolong the spark discharge duration and thus minimize the spark energy required for ignition. However, when assessing the minimum electrostatic energy ½CU2 for dust cloud ignition by accidental electrostatic-spark discharges, current testing standards require that the series inductance of at least 1–2 mH be removed from the spark discharge circuit. No other changes of apparatus and test procedure are required. The present paper questions whether this simple approach is always adequate. The reason is that in practice in industry accidental electrostatic-spark discharge circuits may contain large ohmic resistances due to corrosion, poor electrical grounding connections, poorly electrically conducting construction materials etc. The result is increased spark discharge durations and reduced mechanical disturbance of the dust cloud by the blast wave emitted by the spark. Therefore, testing for minimum ½CU2 for ignition by accidental electrostatic spark discharges may not only require removal of the series inductance of 1–2 mH from the standard MIE spark discharge circuit. Additional tests may be needed with one or more quite large series resistances Rs inserted into the spark discharge circuit. The present paper proposes a modified standard test procedure for measurement of the minimum electrostatic-spark ignition energy of dust clouds that accounts for these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号