首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of LNG (liquefied natural gas) as fuel brings up issues regarding safety and acceptable risk. The potential hazards associated with an accidental LNG spill should be evaluated, and a useful tool in LNG safety assessment is computational fluid dynamics (CFD) simulation. In this paper, the ADREA-HF code has been applied to simulate LNG dispersion in open-obstructed environment based on Falcon Series Experiments. During these experiments LNG was released and dispersed over water surface. The spill area is confined with a billboard upwind of the water pond. FA1 trial was chosen to be simulated, because its release and weather conditions (high total spill volume and release rate, low wind speed) allow the gravitational force to influence the cold, dense vapor cloud and can be considered as a benchmark for LNG dispersion in fenced area. The source was modeled with two different approaches: as vapor pool and as two phase jet and the predicted methane concentration at sensors' location was compared with the experimental one. It is verified that the source model affect to a great extent the LNG dispersion and the best case was the one modeling the source as two phase jet. However, the numerical results in the case of two phase jet source underestimate the methane concentration for most of the sensors. Finally, the paper discusses the effect of neglecting the ?9.3° experimental wind direction, which leads to the symmetry assumption with respect to wind and therefore less computational costs. It was found that this effect is small in case of a jet source but large in the case of a pool source.  相似文献   

2.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

3.
重气连续泄漏扩散的风洞模拟实验与数值模拟结果对比分析   总被引:12,自引:2,他引:12  
将重气连续泄漏的风洞模拟实验结果与SLAB重气扩散模型的预测结果进行了对比 ,分析了实验结果与模型预测结果的一致性 ,剖析了重气连续扩散的特点 ,特别是风速对重气连续泄漏扩散的影响 ,提出了在风洞模拟实验及扩散模型方面下一步应做的工作  相似文献   

4.
LNG池火热辐射模型及安全距离影响因素研究   总被引:1,自引:1,他引:0  
重点对LNG池火热辐射模型,模型应用方式,以及热辐射安全距离的影响因素做了详细研究,给出池火热辐射模型采用及安全距离计算的方法。对常用的热辐射计算模型(点源模型、LNGFire3和PoFM ISE模型)加以介绍,并对3种模型做了对比研究。PoFM ISE模型充分考虑大池火直径时不完全燃烧的因素以及风速对火焰高度的影响,建议当风速大于1.5 m/s,池火直径大于20 m时采用。同时,进一步研究影响LNG池火热辐射安全距离的各种因素,包括池火直径、风速、环境温度和湿度,从而得出不同条件下池火热辐射安全距离的要求。  相似文献   

5.
In recent years, particular interest has been direct to the issues of risk associated with the storage, transport and use of Liquefied Natural Gas (LNG) due to the increasing consideration that it is receiving for energy applications. Consequently, a series of experimental and modeling studies to analyze the behavior of LNG have been carried out to collect an archive of evaporation, dispersion and combustion information, and several mathematical models have been developed to represent LNG dispersion in realistic environments and to design mitigation barriers.This work uses Computational Fluid Dynamics codes to model the dispersion of a dense gas in the atmosphere after accidental release. In particular, it will study the dispersion of LNG due to accidental breakages of a pipeline and it will analyze how it is possible to mitigate the dispersing cloud through walls and curtains of water vapor and air, also providing a criterion for the design of such curtains.  相似文献   

6.
Computational fluid dynamics (CFD) simulations have been conducted for dense gas dispersion of liquefied natural gas (LNG). The simulations have taken into account the effects of gravity, time-dependent downwind and crosswind dispersion, and terrain. Experimental data from the Burro series field tests, and results from integral model (DEGADIS) have been used to assess the validity of simulation results, which were found to compare better with experimental data than the commonly used integral model DEGADIS. The average relative error in maximum downwind gas concentration between CFD predictions and experimental data was 19.62%.The validated CFD model was then used to perform risk assessment for most-likely-spill scenario at LNG stations as described in the standard of NFPA 59A (2009) “Standard for the Production, Storage and Handling of Liquefied Natural Gas”. Simulations were conducted to calculate the gas dispersion behaviour in the presence of obstacles (dikes walls). Interestingly for spill at a higher elevation, e.g., tank top, the effect of impounding dikes on the affected area was minimal. However, the impoundment zone did affect the wind velocity field in general, and generated a swirl inside it, which then played an important function in confining the dispersion cloud inside the dike. For most cases, almost 75% of the dispersed vapour was retained inside the impoundment zone. The finding and analysis presented here will provide an important tool for designing LNG plant layout and site selection.  相似文献   

7.
The international transport, storage and utilisation of LNG is growing rapidly. Whilst the LNG industry has an excellent safety record, the possibility of an accidental release cannot be discounted. Internationally-accepted standards, such as the 59A Standard of the US National Fire Protection Association (NFPA), provide direction on the assessment of LNG spill hazards and hazard range criteria which must be met. Modelling of the atmospheric dispersion of LNG vapour from accidental spills is one of the critical steps in such hazard analyses. This paper describes a comprehensive evaluation protocol devised for the 59A Standard, specifically for the assessment of LNG vapour dispersion models. The evaluation protocol is based on methodologies developed in previous European Union studies, which have been extended, significantly adapted and tailored to the specific requirements of the evaluation of models for the dispersion of LNG vapour. The protocol comprises scientific evaluation of the numerical and physical basis of models for the dispersion of LNG vapour, model verification, and validation; resulting in a comprehensive model evaluation report which includes qualitative and quantitative criteria for model acceptance. A supporting suite of validation data, and guidance on the use of this data, has also been produced. The NFPA 59A (2009) standard states that LNG vapour dispersion models are acceptable for use if they have been evaluated in accordance with this protocol.  相似文献   

8.
针对工业LNG储罐泄漏问题,基于Fluent软件结合UDF修正风速模型,研究不同工况下泄漏发展情况,并对泄露口下风向沿直线距离上的泄漏气体浓度进行分析,得出准确气体扩散浓度范围.研究结果表明,泄漏孔口越接近地面,横向扩散距离越大.相同风速下,泄漏路径上气体浓度具有相似的变化趋势,风速越高泄漏气体沿扩散路径的稀释作用越强...  相似文献   

9.
森林火灾是一种破坏性极强的灾害,它与农事活动以及气象条件密切相关,加强其预防与控制具有十分重要的作用和意义。根据2014年~2015年闽东屏南县进行的60次林缘计划烧除试验观测的主要气象要素数据(天晴日数、温度、湿度、风速),建立基于Logistic二元回归的林缘烧除气象条件判别模型进行检验和分析。结果表明,模型判别计划烧除成功与否的预报准确率高(91.7%),主要气象要素对林缘计划烧除成功与否发挥重要作用,其中连续晴天日数为最大影响因子,其次为风速。模型通过检验和验证结果显著,具有预报服务应用价值。  相似文献   

10.
The siting of facilities handling liquefied natural gas (LNG), whether for liquefaction, storage or regasification purposes, requires the hazards from potential releases to be evaluated. One of the consequences of an LNG release is the creation of a flammable vapor cloud, that may be pushed beyond the facility boundaries by the wind and thus present a hazard to the public. Therefore, numerical models are required to determine the footprint that may be covered by a flammable vapor cloud as a result of an LNG release. Several new models have been used in recent years for this type of simulations. This prompted the development of the “Model evaluation protocol for LNG vapor dispersion models” (MEP): a procedure aimed at evaluating quantitatively the ability of a model to accurately predict the dispersion of an LNG vapor cloud.This paper summarizes the MEP requirements and presents the results obtained from the application of the MEP to a computational fluid dynamics (CFD) model – FLACS. The entire set of 33 experiments included in the model validation database were simulated using FLACS. The simulation results are reported and compared with the experimental data. A set of statistical performance measures are calculated based on the FLACS simulation results and compared with the acceptability criteria established in the MEP. The results of the evaluation demonstrate that FLACS can be considered a suitable model to accurately simulate the dispersion of vapor from an LNG release.  相似文献   

11.
The accidental release of toxic chemicals, which are heavier than air and stored under pressure, may create an emergency scenario in an industrial plant. The extension of vulnerable distance in the downwind direction is an important criterion in framing an emergency management plan of that industrial area. There are several studies showing the role of surface level meteorological and topographical features on its propagation and dispersion just after its release from a container. In the present study, vertical variation of wind speed in the atmospheric boundary layer and surface roughness parameter have been considered to study their roles on the impact of downwind extension of vulnerable distances. A catastrophic release from a tonner having 900 kg of liquid chlorine has been considered, and SAFETI Micro developed by DNV Technica, UK has been utilized in the consequence analysis of this release. The analysis results have been explained for various atmospheric stability classes and surface wind speeds.  相似文献   

12.
An underwater LNG release test was conducted to understand the phenomena that occur when LNG is released underwater and to determine the characteristic of the vapor emanating from the water surface. Another objective of the test was to determine if an LNG liquid pool formed on the water surface, spread and evaporated in a manner similar to that from an on-the-surface release of LNG.A pit of dimensions 10.06 m × 6.4 m and 1.22 m depth filled with water to 1.14 m depth was used. A vertically upward shooting LNG jet was released from a pipe of 2.54 cm diameter at a depth of 0.71 m below the water surface. LNG was released over 5.5-min duration, with a flow rate of 0.675 ± 0.223 L/s. The wind speed varied between 2 m/s and 4 m/s during the test.Data were collected as a function of time at a number of locations. These data included LNG flow rate, meteorological conditions, temperatures at a number of locations within the water column, and vapor temperatures and concentrations in air at different downwind locations and heights. Concentration measurements were made with instruments on poles located at 3.05 m, 6.1 m and 9.14 m from the downwind edge of the pit and at heights 0.46 m, 1.22 m, and 2.13 m. The phenomena occurring underwater were recorded with an underwater video camera. Water surface and in-air phenomena including the dispersion of the vapor emanating from the water surface were captured on three land-based video cameras.The lowest temperature recorded for the vapor emanating from the water surface was −1 °C indicating that the vapor emitted into air was buoyant. In general the maximum concentration observed at each instrument pole was progressively at higher and higher elevations as one traveled downwind, indicating that the vapor cloud was rising. These findings from the instrument recorded data were supported by the visual record showing the “white” cloud rising, more or less vertically, in air. No LNG pool was observed on the surface of water. Discussions are provided on the test findings and comparison with predictions from a previously published theoretical model.  相似文献   

13.
对郑州市2005年1月—2009年12月份的可吸入颗粒物(PM10)指数数据进行统计分析,并利用Matlab软件建立了利用气象要素预测PM10的BP神经网络模型。结果表明:2005—2009年郑州市PM10指数的年均值和空气质量超标天数逐步下降,且趋于稳定;年内各月的PM10指数浓度差异很大,冬季PM10指数显著高于夏季,8月最低,而12月最高;采暖期PM10指数显著高于非采暖期,而节假日对于PM10指数的影响不明显;通过平均风速、平均气温、平均气压和平均相对湿度预测PM10浓度可以达到最高精度86.85%。  相似文献   

14.
15.
为研究不同风速与火源功率共同作用下矿井火灾蔓延规律的变化,以安源煤矿378工作面为研究对象,建立FDS矿井巷道火灾全尺寸模型,设置火源功率分别为3,6 MW,风速分别为0.25,1.25,2.25,3.25 m/s的8种工况。研究结果表明:相同风速下,巷道内温度及相同位置CO浓度值随火源功率增大而升高,巷道内能见度随火源功率增大而降低,且火源功率越大,能见度降到零的火灾区域越大;相同火源功率下,巷道内温度及相同位置CO浓度值随着风速增加而升高,能见度随风速增加而降低;火灾蔓延速率与风速成正比,风速的增大加速下风向火灾的发展,但会减缓上风向火势的蔓延。  相似文献   

16.
Dispersion of several common `heavy' gases (ethylene, propylene, ammonia, and chlorine) has been modelled on the basis of modifications in plume path theory. The model takes into account, among other things, the variations in temperature, density, and specific heat during the movement of the heavy gas plume. The effects of wind speed, density of the gas, and venting speed on the plume dispersion have been simulated. Based on the simulations a set of empirical equations has been developed. The equations have been validated by theoretical as well as experimental studies.Studies have also been carried out to simulate the effect of venting speed (manipulated by injecting hot air with the released gas) on the plume dispersion. The study reveals that the effect of venting speed on dispersion is very pronounced and can be used to reduce the risk posed by the accidental luxurious release of toxic/flammable gases. For example an increase of 20% in venting speed of chlorine (54.1 m/s) can reduce the distance up to which toxic concentration would occur by about 1100 meters.  相似文献   

17.
为了研究矿井发生火灾后高温烟流的蔓延规律及影响因素,利用COMSOL软件对火区进行数值模拟,建立巷道三维模型,得到火区风流速度与温度分布。通过改变边界条件,分析火风压作用下,火区烟气在不同控制风速、巷道条件作用下蔓延规律,得出不同因素与临界风速的关系,为选取合理的火灾控制风速提供理论依据。研究结果表明:火源温度一定时,巷道入口风速越低,火源下风侧高温烟流越靠近巷道顶部,随着风速增大,向巷道下部蔓延;风速较低时,在火区火风压的作用下,会产生烟流逆退现象,随着风速的增大,逆流层长度和厚度随之减小;巷道入口通风条件不变时,火区温度越高越容易产生烟流的逆退,影响范围越大;巷道高度越高、上行风坡度越小,越易发生逆退现象;不同影响因素与巷道平均温度不成正比关系,其中下行风坡度5~15°时巷道平均温度较高且易于发生烟流滚退现象,影响范围较大;火源温度、巷道条件与临界风速的数据拟合结果对预测巷道的临界风速有较好的参考价值。  相似文献   

18.
This paper is the second installment of a paper published on Process Safety and Environment Protection in 2013, which evaluates the Air-Fin-Cooler (AFC) forced ventilation effect over natural ventilation inside congested LNG process train, i.e., modularized LNG, considering the Air Change per Hour (ACH) using Computational Fluid Dynamics (CFD) analysis. This second paper evaluates the effect of forced ventilation on gas cloud dispersion using CFD in order to evaluate possible design measures, such as safety distance in trains and whether to shut down the AFC in case of releases. The results of this evaluation show that gas cloud accumulation is reduced by AFC induced air flow in the case of shorter separation distances between modules. Based on the results, two design measures are proposed, i.e., keep AFC running during emergency and train orientation against prevailing wind direction.  相似文献   

19.
为保障氢燃料动力船加注作业安全,基于FLACS软件构建模拟模型,将模拟与实验结果进行对比,分析泄漏方向、大气稳定度、风速等因素对氢燃料动力船岸基式加注作业泄漏扩散的影响,并基于模拟结果划定加注作业限制区域及警戒区域。研究结果表明:FLACS模拟结果与实验结果吻合较好;大气越稳定,泄漏后的氢气云越难扩散;水平方向上,氢气云扩散距离随风速的增大先小幅增加后降低;垂直方向上,较高风速对氢气云扩散存在促进作用;建议水上加氢站的控制室在原先设计的基础上向内移动5 m以上;建议取沿船长方向125 m、沿船宽方向21 m、沿垂直方向24 m为包络线,设置加注限制区域,该区域内禁止无关人员进入,并严禁任何形式的点火源。  相似文献   

20.
This study developed an improved model for the dispersion of released toxic gases, SLABi, based on the widely used model SLAB. Two major improvements enhanced the model's ability to represent observations. First, SLAB was upgraded to account for temporal variation in wind vectors. Thus, real-time changes in meteorological conditions can be considered in dispersion forecasting. Second, a source term module was developed and embedded in SLABi to standardize the procedure of emission calculation. Both the standard SLAB model and the SLABi model were applied to a case study to evaluate the impact of time-varying winds on the dispersion of released gases. The results showed that meteorology has a significant influence on the dispersion of released gases. The SLABi model can provide decision makers with timely and accurate guidance, so as to minimize hazards to people and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号