共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the accidental spill of ethylene oxide, and a sensitivity analysis of the corresponding consequences was conducted using computational fluid dynamics (CFD). A validation of the gas dispersion CFD model against the experimental data sets included in the model evaluation protocol (MEP) was performed. The effect of the variability of the wind velocity on the extension of the hazardous areas and pool evaporation characteristics was evaluated. Additionally, the mitigation effects of the dike walls surrounding a spill were discussed. CFD simulation results have shown that the mitigation effect of dike walls is determined by their influence on both gas dispersion and pool evaporation and depends strongly on wind velocity in terms of toxic impact distances. 相似文献
2.
Experience shows that, despite the best efforts of the pipeline industry worldwide, pipelines do fail and release their contents to the atmosphere. In the case of below-ground pipelines transmitting natural gas, there is a chance that the release will be ignited, posing a significant hazard to any people in the vicinity. Mindful of this hazard, an international group of gas companies have collaborated over a period of many years on research projects aimed at developing an understanding of how these releases may arise (failure causes), how often they might occur (failure frequency), what type of releases might be produced (failure modes) and what type of behaviour might be produced for each of these modes of release (consequence analysis). This paper has been prepared to describe the mathematical models that have been developed on behalf of this group to assess the initial transient period following the rupture of a buried natural gas transmission pipeline assuming the release ignites immediately. It gives details of the equations used by the different models and it refers to some of the experimental data that has been used in the development of the models. A comparison of the model with the experimental data is provided. This demonstrates that the early stages could have a significant impact when evaluating the harm that could be caused. This provides a justification for developing the models rather than using a simpler alternative that does not take the initial highly transient period into account. 相似文献
3.
The present paper describes the theory behind the “plume rise from warehouse or pool fires model” as implemented in the software package EFFECTS. This model simulates the rising of buoyant plumes due to the density difference between the hot combustion products and the ambient air. The plume rise model calculates the maximum height at which the released material will be in equilibrium with the density of the air, and presents the resulting trajectory of the plume, including hazard distances to specific concentration threshold levels. These parameters will be determined depending on the wind speed, atmospheric stability class and the fire's convective heat production, leading to potential penetration of the mixing layer.Additionally, the penetration of the smoke plume through the temperature inversion layer is assessed. If the convective heat of production is sufficient to penetrate the mixing layer, the smoke plume will be trapped above the mixing layer. When this occurs, the (potentially toxic) combustion products do not disperse back below the mixing layer, thus, the individuals at ground level are not exposed to the harmful combustion products. If the convective heat of production is not sufficient to penetrate the mixing layer, the smoke plume may experience the so-called reflection phenomena which will trap the smoke plume below the mixing layer. This could have more dangerous consequences for individuals who then might be exposed to harmful combustion products at ground level.Moreover, this paper includes the validation of the model against experimental data as well as to other widely validated mathematical models. The experiments and mathematical models used for the validation are described, and a detailed discussion of the results is included, with a statistical and graphical comparison against the field data. 相似文献
4.
One of conservation transfer methods for such widely-used gases as natural gas and hydrogen is buried pipelines. Safety of these pipelines is of great importance due to potential risks posed by inefficiencies of the pipelines. Therefore, an accurate understanding of release and movement characteristics of the leaked gas, i.e. distribution and speed within soil, the release to the ground surface, the movement of hydrogen gas through the ground, gas underground diffusion, gas dispersion in atmosphere, and following consequences, are very important in order to determine underground dispersion risks. In the present study, consequences of gas leakage within soil were evaluated in two sub-models, i.e. near-field and far-field, and a comprehensive model was proposed in order to ensure safety of buried gas supply pipelines. Near-field model which is related to soil and ground and its output is the gas released at different points and times from ground surface and it was adopted as input of far-field sub-model which is dispersion model in atmosphere or an open space under the surface. Validation of near-field sub-model was performed by the experimental data obtained by Okamoto et al. (2014) on full-scale hydrogen leakage and then, possible scenarios for far-field sub-model were determined. 相似文献
5.
The paper presents a mathematical model for predicting outflow rates from a ruptured pipeline transporting compressed volatile liquids. The main focus of the paper is the methodology used to predict thermodynamic properties of interest. The model is validated using experimental data in the open literature. As the field scale outflow data does not include typical operating conditions the model is further validated at higher pressures and longer pipelines by comparing outflow rates calculated using a commercial pipeline simulation package, PROFES. The mathematical model predictions of mass flow rate and pipeline inventory agree well with the measured data and the more sophisticated pipeline model. The simple pipeline rupture model is a useful tool for consequence analysis as it has a fast runtime on a standard PC. A further advantage is it is more easily, without having to address all of the numerical issues that arise when using a more sophisticated pipeline model. This allows a safety engineer to focus on the potential hazard rather than driving the model. 相似文献
6.
The field of oil spill cost modelling is not as well explored as desirable. Generally speaking, the existing models have either low accuracy, in that their predictions are far from the real cost, or low applicability, in that they are only valid under very specific conditions; such as in one particular country. This work strives to construct a model that is functional in a global scope and still possess a high level of accuracy. The resulting attempt is in many ways superior to the publicly available competitors, not only because of its predictive capacity but also because the model is quick to use, and its input variables should be readily available to any informed user. The model is more accurate comparing with similar available models. However, further study is needed to modify it to obtain more realistic results. 相似文献
7.
This paper discusses the validation of discharge and subsequent atmospheric dispersion for both unpressurised and pressurised carbon dioxide releases using the consequence modelling package Phast.The paper first summarises the validation of the Phast dispersion model (UDM) for unpressurised releases. This includes heavy gas dispersion from either a ground-level line source (McQuaid wind-tunnel experiments) or an area source (Kit-Fox field experiments). For the McQuaid experiments minor modifications of the UDM were made to support line sources. For the Kit Fox experiments steady-state and 20-s finite-duration releases were simulated for both neutral and stable conditions. Most accurate predictions of the concentrations for finite duration releases were obtained using the UDM Finite Duration Correction method.Using experiments funded by BP and Shell and made available via DNV's CO2PIPETRANS JIP, the paper secondly summarises the validation of the Phast discharge and dispersion models for pressurised CO 2 releases. This modelling accounted for the possible presence of the solid CO 2 phase following expansion to atmospheric pressure. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases. Both the flow rate and the concentrations were found to be predicted accurately.The above validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models. 相似文献
8.
This study developed an improved model for the dispersion of released toxic gases, SLABi, based on the widely used model SLAB. Two major improvements enhanced the model's ability to represent observations. First, SLAB was upgraded to account for temporal variation in wind vectors. Thus, real-time changes in meteorological conditions can be considered in dispersion forecasting. Second, a source term module was developed and embedded in SLABi to standardize the procedure of emission calculation. Both the standard SLAB model and the SLABi model were applied to a case study to evaluate the impact of time-varying winds on the dispersion of released gases. The results showed that meteorology has a significant influence on the dispersion of released gases. The SLABi model can provide decision makers with timely and accurate guidance, so as to minimize hazards to people and the environment. 相似文献
10.
Process facilities handling hazardous chemicals in large quantities and elevated operating conditions of temperature/pressure are attractive targets to external attacks. The possibility of an external attack on a critical installation, performed with an intention of triggering escalation of primary incidents into secondary and tertiary incidents, thereby increasing the severity of consequences needs to be effectively analysed. A prominent Petrochemical Industry located in Kerala, India was identified for studying the possibility of a deliberately induced domino effect. In this study, a dedicated Bayesian network is developed to model the domino propagation sequence in the chemical storage area of the industry, and to estimate the domino probabilities at different levels. This method has the advantage of accurately quantifying domino occurrence probabilities and identifying possible higher levels of escalations. Moreover, the combined effect from multiple units can be modelled easily and new information can be added into the model as evidences to update the probabilities. Phast (Process hazard analysis) software is used for consequence modelling to determine the impact zones of the identified primary and secondary incidents. The results of the case study show that such analyses can greatly benefit green field and brown field projects in determining the appropriate safety and security measures to be implemented or strengthened so as to reduce its attractiveness to external threat agents. 相似文献
11.
The consequence modelling package Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released substance to occur only in the vapour and liquid phases. The latest versions of Phast include extended models which also allow for the occurrence of fluid to solid transition for carbon dioxide (CO 2) releases.As part of two projects funded by BP and Shell (made publicly available via CO2PIPETRANS JIP), experimental work on CO 2 releases was carried out at the Spadeadam site (UK) by GL Noble Denton. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases (vapour storage). The CO 2 was stored in a vessel with attached pipework. At the end of the pipework a nozzle was attached, where the nozzle diameter was varied.This paper discusses the validation of Phast against the above experiments. The flow rate was predicted accurately by the Phast discharge models (within 10%; considered within the accuracy at which the BP experimental data were measured), and the concentrations were found to be predicted accurately (well within a factor of two) by the Phast dispersion model (UDM). This validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models. 相似文献
12.
The aim of this article is to summarize the safety and security aspects of storing of Liquefied Natural Gas (LNG) as a potential alternative fuel. The contribution deals with possible scenarios of accidents associated with LNG storage facilities and with a methodology for the assessment of vulnerability of such facilities. The protection of LNG storage facilities as element of critical infrastructure should also be a matter of interest to the state. The study presents the results of determination of hazardous zones around LNG facilities in the event of various sorts of release. For calculations, the programs ALOHA, EFFECTS and TerEx were used and results obtained were compared. Scenarios modelled within this study represent a possible approach to the preliminary assessment of risk that should be verified by more detailed modelling (CFD). These scenarios can also be used for a quick estimation of areas endangered by an incident or accident. The results of modelling of the hazardous zones contribute to a reduction in risk of major accidents associated with these potential alternative energy sources. 相似文献
13.
This paper describes part of a programme of work undertaken at the Health and Safety Laboratory (HSL) to investigate the behaviour of selected water-reactive chemicals. Following an accidental release, such substances react exothermically with any water present, generating acidic vapours. The STAWaRS (Source Term Assessment of Water Reactive Substances) software was developed for the Health and Safety Executive (HSE) by ESR Technology to model this complex process. The aims of the study described here were to provide experimental validation of the heats of hydrolysis used within STAWaRS, and to perform sensitivity studies on selected STAWaRS input parameters.The heat of hydrolysis of acetyl chloride was measured and showed good correlation with the value used within STAWaRS. Some of the variables that influence the severity of acetyl chloride spills are examined, with reference to predictions made by the STAWaRS model. The heats of hydrolysis of titanium tetrachloride previously measured at HSL are also discussed, and the effect of adopting these experimentally derived values for modelling spills is shown for a hypothetical land use planning case. This study demonstrates the importance of using experimentally validated values for STAWaRS input parameters. 相似文献
14.
In the Arctic environment, the fluid temperature in the pipeline can drop below the freezing point of water, which causes wax and ice to form on the pipeline surface. Solid formation on the pipeline surface can lead to flow assurance and process safety issues, such as blockage of the pipeline, pipeline component failure, and release of hazardous liquid. Remediating the plugging requires a shutdown of pipeline operation, which incurs tremendous cost and delays the entire production system. In order to prevent blockage, the pigging operation can be used to remove the deposits on the pipeline surface on a regular interval. Ice and wax depositions in the pipeline are a slow process. However, if the deposition grows too thick, pipeline blockage can still occur after pigging operation. So, ice and wax deposition rates are required to be estimated accurately. This paper investigates ice and wax deposition rates in a 90,000 m pipeline. A fundamental model for both ice and wax deposition is proposed using the first principles of heat and mass transfer. 相似文献
15.
This paper describes the development and experimental validation of a three-phase flow model for predicting the transient outflow following the failure of pressurised CO 2 pipelines and vessels. The choked flow parameters at the rupture plane, spanning the dense-phase and saturated conditions to below the triple point, are modelled by maximisation of the mass flowrate with respect to pressure and solids mass fraction at the triple point. The pertinent solid/vapour/liquid phase equilibrium data are predicted using an extended Peng–Robinson equation of state.The proposed outflow model is successfully validated against experimental data obtained from high-pressure CO 2 releases performed as part of the FP7 CO2PipeHaz project (www.co2pipehaz.eu).The formation of solid phase CO 2 at the triple point is marked by a stabilisation in pressure as confirmed by both theory and experimental observation. For a fixed diameter hypothetical pipeline at 100 bar and 20 °C, the flow model is used to determine the impact of the pipeline length on the time taken to commence solid CO 2 discharge following its rupture. 相似文献
17.
Most risk analysis methods rely on a qualitative judgment of consequence severity, regardless of the analysis rigor applied to the estimation of hazardous event frequency. Since the risk analysis is dependent on the estimated frequency and consequence severity of the hazardous event, the error associated with the consequence severity estimate directly impacts the estimated risk and ultimately the risk reduction requirements. Overstatement of the consequence severity creates excessive risk reduction requirements. Understatement results in inadequate risk reduction.Consistency in the consequence severity estimate can be substantially improved by implementing consequence estimation tools that assist PHA/LOPA team members in understanding the flammability, explosivity, or toxicity of process chemical releases. This paper provides justification for developing semi-quantitative look-up tables to support the team assessment of consequence severity. Just as the frequency and risk reduction tables have greatly improved consistency in the estimate of the hazardous event frequency, consequence severity tables can significantly increase confidence in the severity estimate. 相似文献
18.
The assessment of the consequences of high pressure releases of flammable gases is a fundamental requirement for the safe design and operation of industrial installations, plants and pipework. A scenario of interest concerns a high pressure jet-fire following the ignition of a gas jet release which results in a thermal loading to the surroundings and possibly leads to accident escalation. In the present paper, a case study is presented: two parallel-laid natural gas pipelines have been considered, the accidental scenarios which may possibly occur as a consequence of a pipeline failure have been discussed and the thermal effects caused by the jet-fire developing from different rupture sizes have been assessed. Three scenarios have been analyzed, considering the pipelines being within a highly congested area: (i) large failure and vertical jet with detached flame; (ii) small failure with jet fire directly impinging on the parallel pipeline; (iii) small failure with pipeline engulfed within fire. Once the temperature gradient through the pipeline wall has been found, the stresses deriving from pressure load and steel differential expansion have been analytically calculated and compared with the yielding stresses at the temperature achieved by the pipeline wall. In the first scenario the pipeline is able to resist without major problems; in the second case the pipeline rupture is likely to occur; in the third scenario the pipeline resists to the applied loads but with a low margin to yielding. It is understood that the analysis results are very much dependent on the utilized hypotheses, therefore a sensitivity analysis was performed in order to assess the variation of the results as a function of the variation of problem data; this analysis identifies the large influence of the parameters on the final result. 相似文献
19.
Safety of people has been the most important concern since the onset of commercial use of Compressed Natural Gas 1 as a novel type of vehicle fuel. Provided a car vessel bursts, irreversible consequences will surface. The most important hazard threatening people and their properties in CNG distribution stations is pressurized natural gas in station storage vessels and car vessels. Storage vessels are far from people; however, they may damage other properties such as pipes, valves, electrical equipment, and etc. Owing to the distance between storage vessels and the hive, the risk is not considered a big concern; on the contrary, car storage vessel is very close to the passengers sitting in the car and those standing around the car. The proximity heightens the risk as the consequences caused by vessel burst can be more catastrophic than the former condition. Taken together, the car CNG vessel burst may be regarded as the most hazardous event at CNG distribution centers. It is believed that modeling the mentioned events can illustrate risky conditions. The present study was formulated in order to model one of such accidents occurring in Azad-Shahr in the winter 2010. The obtained results provided useful points and recommendations like the minimum safe distance from rupture center depending on such outcomes as overpressure, types of fire, or toxic release. The recommendations provided by the present study can prevent people from calamitous events and they can be adopted so as to reduce severity of possible events. 相似文献
20.
For releases of hydrocarbons from a subsea pipeline, riser, or production facility, the shape of the plume rising through the water must be predicted prior to any assessment of gas dispersion, liquid pools, or fire above the water surface. The location and size of the plume at the water surface are key parameters for subsequent consequence modeling. A mechanistic model has been developed to predict the plume trajectory and size, based on mass and momentum balances and an empirical water entrainment ratio from the literature. With suitable physical property values available, the model is applicable to releases of gas and/or liquid hydrocarbons, predicting the vaporization and vapor expansion due to decreasing hydrostatic pressure as the plume rises through the water. Some validation of the model was obtained with 16 tests in a small-scale transparent tank. The data cover a wide range of flow rates, including both choked and unchoked flow. The predicted and measured trajectories (centerline displacement) agreed reasonably well. Predictions of the model are presented for three fluids. The model is valuable for assessing the consequences of underwater hydrocarbon releases, providing input for subsequent modeling of gas dispersion or liquid pools and pool fires. 相似文献
|