首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas hydrate formation in natural gas and NGL systems can block pipelines, equipment, and instruments, restricting or interrupting flow leading to safety hazards to production/transportation systems and to substantial economic risks. The amount of hydrate inhibitor to be injected not only must be sufficient to prevent freezing of the inhibitor water phase, but also must be sufficient to provide for the equilibrium vapor phase content of the inhibitor. The vapor pressure of methanol must be high enough so that significant quantities will vaporize. Therefore to estimate methanol vaporization losses, it is necessary to develop a new predictive tool. In this work, a simple correlation, which is a mathematically compact and reasonably accurate equation containing few tuned coefficients, is presented here for the prediction of methanol vaporization loss and vapor pressures of aqueous methanol solutions as a function of temperature and methanol mass fraction in aqueous solutions using a novel and theoretically meaningful Arrhenius-type asymptotic exponential function and Vandermonde matrix. The proposed correlation predicts the vapor pressures of aqueous methanol solutions for temperatures up to 100 °C and methanol vaporization loss for temperature between ?16 and 16 °C. Estimations are found to be in excellent agreement with the reliable data in the literature where the average absolute deviation from data is less than 1.5%. The tool developed in this study can be of immense practical value for the engineers and scientists to have a quick check on the methanol vaporization loss and vapor pressures of aqueous methanol solutions at various conditions without opting for any experimental measurements. In particular, chemical and process engineers would find the approach to be user-friendly with transparent calculations involving no complex expressions.  相似文献   

2.
The formation of hydrate will lead to serious flow assurance problems in deepwater submarine natural gas transmission pipelines. However, the accurate evaluation model of the hydrate blocking risk for submarine natural gas transportation is still lacking. In this work, a novel model is established for evaluating the hydrate risk in deepwater submarine gas pipelines. Based on hydrate growth-deposition mechanism, the mathematical model mainly consists of mass, momentum and energy conservation equations. Meantime, the model results are obtained by finite difference method and iterative technique. Finally, the model has been applied in the production of deepwater gas field (L Gas Field) in China, and the sensitivity analysis of relevant parameters has been carried out. The results show that: (a). The mathematical model can well predict the hydrate blockage risk in deepwater natural gas pipelines after verification. (b). Hydrate is easily formed at the intersection of horizontal pipeline and vertical riser, and the maximum blocking position often occurs in middle of the riser. (c). The hydrate blockage degree and length of hydrate formation region (HFR) decrease with the increase of gas transport rate. (d). The hydrate blockage degree and length of HFR decrease with the increase of gas transport temperature. (e). The hydrate blockage degree and length of HFR increase with the extension of horizontal pipeline. (f). Injecting inhibitors can effectively inhibit hydrate formation and blockage, but the improvement of transmission measures can significantly reduce the dosage of inhibitor. It is concluded that measures such as increasing gas transportation rate and temperature, shortening horizontal pipeline length, optimizing inhibitor injection point and injection rate can play a safe, economic and efficient role in hydrate preventing and controlling.  相似文献   

3.
朱强  刘学敏  张松柏  李磊 《安全》2019,40(7):72-75
为了保障陆上气田冬季天然气安全生产,防止因天然气水合物导致安全事故,采用鱼骨图法对陆上气田天然气水合物产生的原因进行系统分析。分析显示,导致天然气水合物产生的根本原因,出现在天然气产能建设和日常生产管理各环节,以及单井、输气管道和集气站各生产场所,为防止天然气水合物产生,针对原因采用5W1H法进行管理,从而达到对冬季天然气生产主要安全风险进行有效控制的目标。  相似文献   

4.
研究了天然气水合物浆液在气液两相螺旋管流中流动特性,分析了以气相为连续相、水合物颗粒为离散相的气固两相螺旋流的流动机理,通过对水合物颗粒受力分析和运动分析,结合螺旋流旋涡结构演化规律,推导出水合物颗粒平动、转动的判断条件,给出了颗粒各种受力的关联式,建立螺旋管流水合物颗粒运动模型,探讨了水合物颗粒的动力学行为。分析水合物浆液流动特性得到临界速度1即水合物浆液从固定床流动向悬浮流转化速度以及临界速度2即水合物浆液从移动床流动向固定床转化速度,为水合物浆液稳定流动提供了理论判据。  相似文献   

5.
In the oil and gas production operations, hydrates deposition leads to serious problems including over pressuring, irreparable damages to production equipment, pipeline blockage, and finally resulting in production facilities shut down and even human life and the environment dangers. Hence, it is of great importance to forecast the hydrate formation conditions in order to overcome problems associated with deposition of hydrate. In this article, an effective, mathematical and predictive strategy, known as the least squares support vector machine, is employed to determine the hydrate forming conditions of sweet natural gases as well as the monoethylene glycol (MEG) flow-rate and desired depression of the gas hydrate formation temperature (DHFT). The outcome of this study reveals that the developed technique offers high predictive potential in precise estimation of this important characteristic in the gas industry. Beside the accuracy and reliability, the proposed model includes lower number of coefficients in contrast with conventional correlations/methods, implying an interesting feature to be added to the modeling simulation software packages in gas engineering.  相似文献   

6.
A thermodynamic procedure has been proposed which can be used to predict the gas pressure, temperature and flow rate through orifice upon chock flow condition, using equation of state (EOS). The procedure applied for emergency depressurization operation incorporating the Peng-Robinson EOS and validated by comparing flow rates of a multi-component hydrocarbon gas mixture for thirteen experimental cases. The average absolute deviations of the predicted flow rates for orifice discharge coefficients of 0.85 and 0.9, are 7.36% and 2.03%, respectively. The corresponding error for API 520 (American Petroleum Institute Recommendation Practice 520) method is 6.91%. In this work, the hydrate formation temperature and hydrate inhibitor type and its required weight fraction for preventing the hydrate formation upon orifice and its upstream conditions are evaluated by the EZ-Thermo software using the Moshfeghian–Maddox method. The results qualitatively show that the hydrate prevention is essential for the safety of the operation due to low temperature condition.  相似文献   

7.
提出了以瓦斯气中的氧气作为氧化剂,选用适当的催化剂对瓦斯气中的甲烷进行直接催化氧化合成甲醇的研究思路。从甲烷液相催化氧化反应机理入手,围绕着矿井瓦斯部分氧化制甲醇的热力学、甲烷液相部分氧化制甲醇的研究基础、瓦斯中氮气的防爆惰化作用及构建的实验系统几个方面对矿井瓦斯液相催化氧化制甲醇的可行性进行了探讨。  相似文献   

8.
为研究海底原油与天然气单相泄漏扩散规律的差异性,合理制定应急响应策略,减小事故损失,针对海底管道失效所致的原油与天然气泄漏问题,基于计算流体动力学CFD方法,建立海底油气管道泄漏事故后果预测与评估模型,对特定事故场景下的海底原油与天然气泄漏扩散过程进行模拟与分析,从泄漏扩散过程、工况因素影响、泄漏后果及应对策略4个方面对比原油与天然气的泄漏扩散特性。结果表明:相同工况下,海底原油与天然气在泄漏速率、扩散时间、扩散形态及水平最大扩散距离方面存在显著差别;与天然气相比,原油泄漏扩散行为对工况因素具有更高的敏感性;原油泄漏会引发严重的环境灾害,天然气泄漏则会影响海上结构物的稳定性及引发火灾爆炸事故,据此需合理制定具有针对性的应对策略。  相似文献   

9.
The effect of the condensation process on the gas and liquid phase behavior during rapid decompression of rich natural gases is studied in the paper numerically. A one-dimensional mathematical model of transient thermal two-phase flow of compressible multi-component natural gas mixture and liquid phase in a shock tube is developed. The set of mass, momentum and enthalpy conservation equations are solved for the gas and liquid phases. The approach to model a liquid condensation process during rapid decompression of rich natural gas mixture is proposed. The mass transfer between the gas and the liquid is taken into account by introducing the appropriate terms into the governing equations. Thermo-physical properties of multi-component natural gas mixture are calculated by solving the Equation of State (EOS) in the form of the Soave–Redlich–Kwong (SRK-EOS) model. The proposed liquid condensation model is integrated into the GDP model. A simple case of GDP model, where the liquid was not considered, was extensively validated on base and dry natural gases. The proposed two-phase model is validated against the experiments where the decompression wave speed was measured in rich natural gases at low temperature. It shows a good agreement with the experimental data.  相似文献   

10.
为对深水高压气井测试地面流程中的节流油嘴段的温压场及水合物生成情况进行研究,采用数值模拟的方式对整个节流管路进行气体流动特性分析.并利用P-T图回归公式法,得出不同温压场条件下的水合物生成情况,进行水合物生成范围对比.结果表明:针阀出口后端气体速度随着管路入口压力和针阀直径的增大而增大,随管路出口压力的增大而减小,而气...  相似文献   

11.
Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to mechanical failure, personal operation errors, etc., and induce huge economic property loss, environmental damages, and even casualties. However, few models have been developed to describe the evolution process of natural gas pipeline leakage accidents (NGPLA) and assess their corresponding consequences and influencing factors quantitatively. Therefore, this study aims to propose a comprehensive risk analysis model, named EDIB (ET-DEMATEL-ISM-BN) model, which can be employed to analyze the accident evolution process of NGPLA and conduct probabilistic risk assessments of NGPLA with the consideration of multiple influencing factors. In the proposed integrated model, event tree analysis (ET) is employed to analyze the evolution process of NGPLA before the influencing factors of accident evolution can be identified with the help of accident reports. Then, the combination of DEMATEL (Decision-making Trial and Evaluation Laboratory) and ISM (Interpretative Structural Modeling) is used to determine the relationship among accident evolution events of NGPLA and obtain a hierarchical network, which can be employed to support the construction of a Bayesian network (BN) model. The prior conditional probabilities of the BN model were determined based on the data analysis of 773 accident reports or expert judgment with the help of the Dempster-Shafer evidence theory. Finally, the developed BN model was used to conduct accident evolution scenario analysis and influencing factor sensitivity analysis with respect to secondary accidents (fire, vapor cloud explosion, and asphyxia or poisoning). The results show that ignition is the most critical influencing factor leading to secondary accidents. The occurrence time and occurrence location of NGPLA mainly affect the efficiency of emergency response and further influence the accident consequence. Meanwhile, the weight ranking of economic loss, environmental influence, and casualties on social influence is determined with respect to NGPLAs.  相似文献   

12.
阐述了瓦斯水合物合成的可行性,分析了水合物储存的稳定性,讨论了水合物固化储运的经济性.结果表明,应用固态水合物方式储运瓦斯具有安全、经济的特点.  相似文献   

13.
天然气计量站阀门多且检定流程中频繁使用桁车,常规天然气站场的失效后果计算方法难以评估由此带来的影响及后果。为此,在API 581标准基础上,考虑阀门截断作用对机械损伤事故的影响,选取管段组储气量为最大天然气泄漏量,并以动量定理为依据,研究了桁车失效所引发的设备跌落事故,建立了潜在影响面积计算模型;将影响面积内损伤的管段及设备、泄漏的天然气、伤亡的人员等折算为经济损失,形成了考虑设备跌落的天然气计量站失效后果计算方法;将该方法应用于某天然气计量站。研究结果表明:设备跌落事故损失金额为机械损伤事故的3倍;当考虑设备跌落事故时,管段风险等级由低级上升为中低级。研究结果可为天然气计量站失效后果评价提供理论支撑。  相似文献   

14.
氨联产甲醇物料的危险性辨识、评价及安全措施   总被引:1,自引:5,他引:1  
氨联产甲醇生产法是生产甲醇的一种主要方法。甲醇生产中的物料都是比较危险的化学品,该类化学品易燃、易爆,容易使人中毒,如果管理不善,一旦发生意外,将造成巨大经济损失和重大人员伤亡。笔者按照OHSMS(职业安全健康管理体系)标准,对氨联产甲醇生产系统中生产过程物料和成品物料的危险性进行辨识和评价,提出了在氨联产甲醇生产系统中有关生产运行的安全管理控制措施,为氨联产甲醇生产系统的安全生产提供了切实可行的手段和途径,旨在提醒人们对氨联产甲醇生产系统的安全生产引起充分重视。  相似文献   

15.
居室天然气泄漏扩散过程仿真研究   总被引:2,自引:1,他引:1  
随着我国城市环境保护的提高,城市燃料结构也在逐步改变。天然气作为一种清洁、高效的能源已经成为居民应用最广泛的燃料。随着天然气用户的不断增加,其事故次数也在不断上升。为了系统的研究居室内天然气泄漏扩散的过程和发展,预防居民家庭天然气火灾和爆炸事故以及发生事故后的应急提供依据。本文以普通的居民居室为研究对象,建立居室天然气泄漏扩散几何模型。并对室内天然气泄漏后的扩散状态进行仿真模拟,得到天然气泄漏后的室内扩散过程,以及在不同时间内存在爆炸极限的区域和达到爆炸极限的范围,并对爆炸后果进行了评估。结果显示:在设定条件下,泄漏发生后640 s,冰箱电源处达到爆炸下限,790 s时达到爆炸上限;其爆炸能量已达到使大型钢架结构破坏,大部分人员死亡的程度。泄漏1800 s后,可燃区域就扩散到厨房之外,存在于客厅之中了。  相似文献   

16.
针对天然气水合物水力提升过程中中继舱部件的沉积安全性问题,为了避免中继舱因沉积过多而导致整个提升系统的瘫痪,利用流场模拟软件CFD,分析了不同结构对中继舱内部流场的影响,对比了正方体、球体和圆柱体3种不同中继舱结构下的颗粒沉积情况、内部流速分布、粗细颗粒以及海水体积分数分布情况,得出圆柱体结构的安全性要优于另外两种结构。研究了圆柱体结构在不同工况下的沉积情况与安全性。结果表明:增加粗颗粒浓度,粗颗粒直径以及粗颗粒的密度都会导致中继舱沉积厚度增加,安全性降低,而增加进口速度则会导致中继舱沉积厚度减小,安全性有所提高。  相似文献   

17.
介绍了某天然气站的基本情况,利用道化学指数评价法,对该站储罐区的1个3000m3球罐进行风险评价,评价结果表明:该罐火灾爆炸指数为149.1,危险等级是较大。一旦罐内天然气在储存过程中发生火灾、爆炸,将使半径38.17m内,面积4574.82m2内的设备、设施受到损害,最大可能财产损失为0.66A万元。由于罐区采取了一些安全措施对储罐安全进行补偿,有效地降低了事故损失。为操作管理者更加全面地了解整个罐区的风险状况提供参考,有利于天然气储罐区的规划、管理及事故预防等。  相似文献   

18.
As an effective way to construct and maintain various life pipelines in urban areas and industrial parks, the underground utility tunnel has been developed rapidly in China in recent years. However, the natural gas pipeline leakage in a utility tunnel may cause fire, explosion or other coupling disastrous accidents that could result in fatal consequences. The effective source term estimation (STE) of natural gas leakage can provide technical supports for emergency response during natural gas leakage accidents in utility tunnels. In this paper, a STE model with the combination of gas transport model, Bayesian inference and slice sampling method is proposed to estimate the source parameters of natural gas leakage in underground utility tunnels. The observed data can be integrated into the gas transport model and realize the inversion of natural gas leakage location and release rates. The parameter sensitivity analysis is presented to evaluate the robustness of the proposed model with good practicability, and the gas sensor layouts in the utility tunnel are analyzed and optimized. The spatio-temporal distribution of the leaked gas could be well predicted based on the estimation source parameters by the proposed STE model. The results show that the proposed model is an alternative and effective tool to provide technical supports for loss prevention and mitigation for natural gas leakage accidents in urban utility tunnels.  相似文献   

19.
The location of Iran in addition to holding the world's second-largest gas reserves, makes this country an important transporter of natural gas in the world. Moreover, Iran is a country that suffers from hazards associated with frequent destructive earthquakes, which can severely damage buried gas transmission networks, different losses correspond to individuals, social, environmental, and the property is expected. Therefore, it is essential to identify potential seismic hazards and assess their risk will be induced to the country. This paper is performing a comprehensive probabilistic loss assessment of the entire network of the Iran Gas Trunklines (IGAT) due to seismic multi-hazard failure using GIS-based analyses and the HAZUS methodology proposed by FEMA. In the current study, all kinds of seismic hazards are considered for analyzing the IGAT as a spatially-distributed infrastructure for being exhaustive. As a result, seismic hazard maps, repair rate maps, the IGAT expected damage state map, and the IGAT economic loss map are presented. As an example of the outputs of this study, the economic loss of the IGAT is predicted by up to 380 US dollars per segment, which is related to the most vulnerable segments of the pipelines. The outputs of the current research not only can help to plan for mitigating the probable seismic losses but also can help anyone, who are involved in designing and developing new gas transmission lines, to design new trunklines with a more degree of safety.  相似文献   

20.
More than thirty-five years ago, the Bhopal disaster shook the whole world and investigators found out that many people survived just because they turned on the fans in their bedrooms. It was postulated that the forced ventilation played an important role in diluting the toxic gas and saved these people. In order to provide evidence to solve this old mystery, this research employed FLACS software to assess the hazardous degree of a toxic gas (hydrogen sulfide) leakage within a petrochemical process. Series of gas dispersion simulations were performed to actualize the hazardous characteristics and the corresponding risks of the release accident. The study shows that the hazardous level and the hazard range can be greatly influenced when parameters, such as the gas leakage circumstances (atmospheric conditions and wind speed) and the mitigation measures (direction of fans and their speed) are altered.By using explosion-proof fans in different positions and ventilation directions, combined with the natural wind in a certain direction, this research attempts to detect the best combination from various mitigation designs and to compare the influence of fan directions on hazard mitigation. It is also the first time of its kind to simulate the effect of forced ventilation on hazard mitigation within a process plant. The results show that the hazardous level of a toxic release can be effectively alleviated, when the direction of the mechanical ventilation is against the natural wind direction. With the help of the CFD simulation and the quantitative risk analysis technique, different loss prevention strategies can be tested via this method in order to establish a safer working environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号