首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The individual alkaline or microwave pretreatment has been proved to be effective in disintegration and acidification of waste activated sludge (WAS). In this study, the effects of combined alkaline and microwave pretreatment at different pH and specific energy input (Es) on WAS disintegration were investigated using response surface methodology (RSM). Combined pretreatment achieved disintegration degree (DD) of 65.87% at Es of 38,400 kJ/kg TS and pH 11.0. The ANOVA further demonstrated that pH showed more significant effect on DD than Es. Anaerobic batch experiment results showed that combined pretreatment not only significantly improved volatile fatty acids (VFAs) accumulation but also shortened the time for the highest VFAs accumulation. The maximal VFAs accumulation (1500 mg COD/L) obtained at Es of 28,800 kJ/kg TS and fermentation time of 72 h, which was about two times that of the treatment without microwave (850 mg COD/L) at 96 h. The analysis of VFAs composition showed that the VFAs mainly consisted of acetic and iso-valeric acids, accounting for 57.3–70.1% of total VFAs.  相似文献   

2.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

3.
Biohydrogen production by dark fermentation in a series of batch tests under different environmental control conditions was evaluated to determine the optimal initial cultivation pH and temperature for a continuous-flow kinetic test to validate the kinetic model system. The waste activated sludge (WAS) from fructose-processing manufacturing was used as the model substrate for biohydrogen production. The batch experiments for biohydrogen production were conducted in a 6 l bioreactor. Fifteen batch kinetic tests were investigated when pH was controlled at 6, 7, 8 and 9 as well as the temperature was controlled at 37 °C, 45 °C and 55 °C, respectively. The experimental results indicated that the optimal operational condition for hydrogen production occurred while pH was 7 and temperature was 55 °C with the highest hydrogen production of 7.8 mmol. The optimal recovery time for hydrogen was 25 h in the batch experiments. Furthermore, the kinetic test of biohydrogen production was performed by anaerobic mixed microbial culture in the continuous-flow experiment when pH and temperature was maintained at 7 and 55 °C. Approximately 60% and 7% of substrate solution was converted into acetate and hydrogen, respectively, at the steady state. Roughly only 0.77% and 2.7% of substrate solution was converted into propionate and butyrate, respectively, at a steady-state condition. The experimental and modeling approaches presented in this study could be employed for the design of pilot-scale and full-scale anaerobic biohydrogen fermentors using food-processing waste activated sludge (WAS) as a substrate solution.  相似文献   

4.
Aluminium-based water treatment sludge was used as a coagulant for removing/recovering phosphate from the effluent of upflow anaerobic sludge blanket (UASB) reactor treating municipal wastewater. The effect of three variables, namely sludge dose, initial pH and fresh coagulant (poly-aluminium chloride, PACl) dose was studied using response surface methodology. About 87% phosphate removal could be obtained at the optimum conditions of sludge dose 13.8 g/L, initial pH 6, and fresh PACl dose 5.8 mg Al/L. In order to achieve a similar phosphate removal, a dose in the range of 30–40 mg Al/L of fresh PACl was required. The results suggest that water treatment sludge can be reused as a coagulant for post-treatment of UASB reactor effluent treating municipal wastewater and can be considered as a promising alternative for removing phosphate which can substantially reduce the consumption of fresh PACl. The sludge generated during this process could potentially be used in land application which results in recycling of phosphate.  相似文献   

5.
Cationic polyelectrolyte promoted effective attachment of iron oxide nanoparticles (IONPs) onto microalgal cells through electrostatic attraction. Poly(diallyldimethylammonium chloride) (PDDA) and chitosan (ChiL), both are cationic polymer, are feasible to act as binding agent to promote rapid magnetophoretic separation of Chlorella sp. through low gradient magnetic separation (LGMS) with field gradient ▿B less than 80 T/m in real time. Cell separation efficiency up to 98% for the case of PDDA and 99% for the case of ChiL can be achieved in 6 min when 3 × 107 cells/mL Chlorella sp. are exposed to 300 mg/L surface functionalized-IONPs (SF-IONPs). Different polyelectrolytes do not give significant effect on cell separation efficiency as long as the particle attachment occurred. However, the PDDA is more preferable as the binder for all type of microalgae medium than the chitosan (ChiL) since it is not pH dependent. SF-IONPs coated with PDDA guarantee the cell separation performance for all pH range of cell medium, with 98.21 ± 0.40% at pH 8.84. On the other hand, the ChiL performance will be affected by the cell medium pH, with only 22.93 ± 31.03% biomass recovery at pH 9.25.  相似文献   

6.
利用超声波处理剩余污泥,通过离心作用模拟污水厂污泥脱水过程,以离心后含水率表征剩余污泥的脱水性能,最终确定最佳超声条件为:超声时间10 min,超声声能密度0.8 W/m L;另外分别研究了单独超声作用、单独絮凝剂作用以及超声-絮凝联合作用对剩余污泥脱水性能的影响。结果表明,单独超声处理或絮凝调理均可降低剩余污泥离心后含水率,超声波与絮凝剂共同作用能更好地提高剩余污泥的脱水性能,并对剩余污泥脱水性能改善的机理进行了理论分析。  相似文献   

7.
A novel advanced oxidation process (AOP) using ultrasonic activated persulfate oxidation was used to pretreat mature landfill leachate. The effects of different operating variables (e.g., the initial S2O82− concentration, pH, temperature, ultrasonic power and reaction time) on the oxidation performance were investigated regarding the total organic carbon (TOC) removal efficiency, and the variables were optimized using the integrated Taguchi method and response surface methodology (RSM). Based on the Taguchi method under L16 (45) arrays and a grey relational analysis, the most significant variables included the initial S2O82− concentration, temperature and reaction time. The concentrations of these variables were further optimized using RSM. Using the integrated optimization method, the optimal conditions included an initial S2O82− concentration of 8.5 mM, a reaction temperature of 70 °C and a reaction time of 2.46 h, which resulted in a TOC removal efficiency of 77.32%. The experimental results showed that the enhanced TOC removal from mature landfill leachate by sono-activated persulfate oxidation could be attributed to the combined effects of ultrasonic catalysis and sulfate radical-AOP. Overall, ultrasonic activated persulfate oxidation is a promising method for the pretreatment of landfill leachate.  相似文献   

8.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

9.
In this research, treatability of high-load compost leachate in a hybrid expanded granular sludge bed (EGSB) and fixed-bed (FB) bioreactor followed by electrocoagulation–flotation (ECF) system was examined. The operational factors in EGSB–FB were influent chemical oxygen demand (COD), hydraulic retention time (HRT) and COD/nitrogen ratio (COD/N). And, their interactive effects on the efficiency of COD removal and biogas production rate (BPR) as responses were analyzed and correlated by response surface methodology (RSM). The optimum conditions of the hybrid EGSB–FB reactor were acquired at COD = 7800 mg/L, HRT = 35 h, COD/N = 70, in which COD removal efficiency was 83% and BPR 94 mL/h. The amount of confidence interval was 95%. COD (relevant coefficient = 9.8) and HRT (relevant coefficient = −24) were resulted respectively as the most effective parameters on COD removal and BPR. Yet, COD/N parameter imposed negative effect on COD removal and BPR in values less than about 100. The outcomes indicated that operated ECF as post-treatment in constant conditions (electrolysis time = 75 min, electrodes distance = 3 cm, voltage = 20 V) successfully satisfied discharge criteria in the most part of experimental domains.  相似文献   

10.
This paper presents the results of a study of a sludge subjected to the (ATAD) process – Autothermal Thermophilic Aerobic Digestion occurring in a two-stage installation operated in a municipal wastewater treatment plant in Olecko, Poland. The study of the sludge and the analysis of obtained results were conducted over 2011 and 2014. The subject of the study was a thickened sludge in an intermediate tank from which it was next transferred to facility reactors. The stabilization of processed sludge was evaluated analyzing the change in the dry mass (DS) content in the sludge. Measurements were carried out in thickened sludge samples and after the ATAD process. Collected results were then subjected to a statistical analysis and it was determined to which extent as resulted from the subject process the dry mass and the dry organic mass (VS) content was changing in the sludge. Also, it was analyzed how the oxygen chemical demand (COD) was changing. The dry mass content in the thickened sludge was from 60 g/l to 160 g/l. After the process, this amount was from 35 to 76 g/l. Similarly, the organic mass content in a dry sludge mass changed from initial values within a range of 44–135 g/l to 23–60 g/l after the ATAD process. Also, the organic substance content expressed as COD decreased from 80 to 467 g O2/l in a thickened sludge to 51–261 g O2/l in the sludge after the process. The article presents conclusions from the result of the conducted study as well as personal experience.  相似文献   

11.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

12.
The kinetic analysis method using non-isothermal technique was proposed to determine the kinetic parameters for the transesterification reaction of waste pig fat in supercritical alcohols. To investigate the transesterification of waste pig fat, the waste pig fat to alcohol ratio (w/w) was varied from 1:1.5 to 1:2.5 between the temperatures 220 and 290 °C at an interval of 10 °C in a 25 mL batch reactor. The products were analyzed by gas chromatography mass spectrometry. To verify the effectiveness of the proposed kinetic analysis method, the experimental values were compared with the values calculated using the kinetic parameters obtained from this work. It was found that the proposed kinetic analysis method gave reliable kinetic parameters for the transesterification of waste pig fat in supercritical alcohols. Further, it was found that the apparent activation energy for supercritical ethanol was lower than the value for supercritical methanol.  相似文献   

13.
An air-recirculated stripping involved two processes and did not require any pretreatment. First, stripping CO2 decreased the buffer capacity of the anaerobic digestate, thereby reducing the amount of lime used to achieve a high pH. Second, lime was added to increase pH and remove ammonia from the anaerobic digestate of pig manure. pH increased from 8.03 to 8.86 by stripping CO2 in the first process (gas-to-liquid ratio = 180) and further reached 12.38 in the second process (gas-to-liquid ratio = 300). During process optimization, the maximum ammonia removal efficiency reached 96.78% with a lime dose of 22.13 g. The value was close to 98.25%, which was the optimal result predicted by response surface methodology using the software Design-Expert 8.05b. All these results indicated that air-recirculated stripping coupled with absorption was a promising technology for the removal and recovery of nitrogen in the anaerobic digestate of pig manure.  相似文献   

14.
This study aims to develop a methodology for analysis of characteristics of heavy metals in MSWI fly ash. It performed analysis of composition of heavy metals, leaching toxicity, leaching behavior as a function of pH, specification distribution and corresponding mineral components of residue derived from each step of the sequential extraction. It is found that content of heavy metals follows the sequence of Zn > Pb > Cu > Cr > As > Ni > Cd approximately Hg in both plants, and that total heavy metals account for less than 1% by mass of fly ash. Major hazardous heavy metals in fly ash are As, Cd, Hg, Pb and Zn, whose leaching ratios exceed the limit value described in hazardous waste identification standard. Measured leaching results of Cu, Pb and Zn are essentially consistent with the simulated results at pH between 0 and 13. Content of calcium-silicates, alumino-silicates and glass phases in residue derived from sequential extraction procedure increases steadily from the first step to the fifth step of the sequential extraction procedure. Cu, As, Cr, Hg, Cd, and Ni, relatively stable under strong basic conditions, can be leached out under strong acidic conditions, while Zn and Pb tend to be leached out under both strong acidic and basic conditions.  相似文献   

15.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

16.
Nanoscale zero-valent iron (Fe0) was synthesized for nitrate denitrification. The reduction efficiency of nitrate decreased quickly with increasing initial pH value, increased considerably with the increasing dosage of nanoscale Fe0, and did not vary much with initial nitrate concentrations changing from 20 to 50 mg l?1 when the excessive amount of nanoscale Fe0 was utilized. With reductive denitrification of nitrate by nanoscale Fe0, the removal rate of nitrate reached 96.4% in 30 min with nanoscale Fe0 dosage of 1.0 g l?1 and pHin 6.7, and more than 85% of the nitrate was transformed into ammonia. Kinetics analysis in batch studies demonstrates that the denitrification of nitrate by nanoscale Fe0 involves reaction on the metal surface, which fits well the pseudo-first order reaction with respect to nitrate concentration. The observed reaction rate constant of reductive denitrification of nitrate was determined to be 0.086 min?1 with a nanoscale Fe0 dosage of 1.0 g l?1 and pHin 6.7. Fast and highly effective denitrification can be achieved by nanoscale Fe0 compared with commercial Fe0 powder, this is due to the extremely high surface area and high reactivity for nanoscale Fe0, which can enhance the denitrification efficiencies remarkably.  相似文献   

17.
ObjectivesThis study compares the effectiveness of two types of interventions with no intervention on the prevention of needle stick injuries (NSIs).MethodsHealth care workers, who were at risk for NSIs, were eligible for this three-armed cluster randomized controlled trial. In total, 23 hospital wards were randomly assigned to 1 of 2 intervention groups, which were given either a needle safety device and a workshop (NW; 7 wards, n = 267) or a workshop only (W; 8 wards, n = 263), or to a control group (C; 8 wards, n = 266). The primary outcome was the half-year incidence of NSIs, which was measured through questionnaires and official notification at the occupational health service at baseline (T0), 6 months (T1) and 12 months (T2) after baseline. Analysis were done by intention to treat. This study is registered as a prospective randomized trial, number NTR1207.ResultsA statistically significant difference was found between the groups for the half-year incidence of NSIs (p = 0.046) on the basis of questionnaire data with ORs for reported NSIs for the NW group compared with the control group of 0.34 (95% CI: 0.13–0.91) and 0.45 (95% CI: 0.19–1.06) for the W group compared with the control group. The officially registered NSIs during the study period showed no statistical differences between the groups.ConclusionsThe combined intervention of the introduction of needle safety devices and an interactive workshop led to the highest reduction in the number of self-reported NSIs compared to a workshop alone or no intervention.  相似文献   

18.
The objective of this study was to investigate the possibility of heavy metals (copper, zinc and nickel) removal from the waste fountain solution by the electrocoagulation/flotation (ECF) treatment. After the printing process, the fountain solution changes its composition due to direct contact with different printing materials (plates, inks, etc.) and becomes enriched with metals. The effect of operational parameters, such as electrode materials and combinations, current density, interelectrode distance and operating time, was studied. Also, response surface methodology (RSM) was applied to evaluate the effect of main operational variables and to get a balanced removal efficiency of metals from waste fountain solution by ECF treatment. The iron/iron electrode combination yields a higher percentage of copper and zinc removal efficiency (>95% and >80%, respectively), while for nickel the aluminum/iron and iron/aluminum electrode combinations (>95 and >85%, respectively) proved to be more successful. The optimum interelectrode distance was 1.0 cm (for copper) and 1.5 cm (for zinc and nickel) for all current densities. Heavy metal removal efficiency increases with the increase of electrolysis time for all electrode combinations. Also, the increase of current density improves the ECF removal efficiency. Based on the results obtained through RSM, the optimized parameters for the ECF waste fountain solution treatment for metal removal were identified as: Fe(−)/Al(+) electrode with interelectrode distance of 1.5 cm, operating time of 60 min and current density of 8 mA cm−2. Overall, the ECF treatment was proven very efficient in the removal of heavy metals from the waste fountain solution under optimum conditions.  相似文献   

19.
An ozonation process was performed using a recycled electrochemical ozone generator system. A titanium based electrode, coated with nanocomposite of Sn–Sb–Ni was applied as anode in a laboratory-made electrochemical reactor. A constant flow rate of 192 mg/h of generated ozone was entered to an ozonation reactor to contact with a typical target pollutant, i.e., Rhodamine B (Rh.B) molecules in aqueous solution. Four operational parameters such as: initial dye concentration, pH, temperature and the contact time were evaluated for the ozonation process. Experimental findings revealed that for a solution of 8 mg/L of the dye, the degradation efficiency could reach to 99.5% after 30 min at pH 3.7 and temperature of 45 °C as the optimum conditions. Kinetic studies showed that a second order equation can describe the ozonation adequately well under different temperatures. Also, considering to the importance of process simulation, a three-layered feed forward back propagation artificial neural network model was developed. Sensitivity analysis indicated order of the operational parameter's relative importance on the model output as: time  pH > Rh . B initial concentration > temperature.  相似文献   

20.
The present study investigates the adsorption potential of Chrysanthemum indicum flower in its raw (CIF-R) and biochar (CIF-BC) form for the removal of cobalt ions from aqueous solution. The adsorbents were characterized for their surface area using BET analysis, surface morphology and elemental composition with SEM-EDAX and for the presence of functional groups by FTIR analysis. Batch adsorption experiments were carried out to evaluate the effect of process parameters, viz. pH, adsorbent dosage, initial metal ion concentration, contact time, stirring speed, presence of interfering ions and temperature on the adsorption of Co(II) ion using both the adsorbents. The optimum conditions for maximum removal of Co(II) ion was ascertained to be pH 5 for both adsorbents, adsorbent dose of 4 g/L and 3 g/L, equilibrium time of 60 min and 45 min, respectively, for CIF-R and CIF-BC. The maximum adsorption capacity of CIF-R and CIF-BC was found to be 14.84 mg/g and 45.44 mg/g, respectively, for the removal of Co(II) ion. The mechanism of adsorption was studied using different models of adsorption kinetics, isotherms and thermodynamics. It was inferred that Co(II) adsorption on both CIF-R and CIF-BC followed pseudo-second order kinetics and Langmuir isotherm model with the process being spontaneous and endothermic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号