首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
2.
A physical and mathematical model of the reduced kinetics is presented describing heterogeneous detonation in suspensions non-uniform in particle concentration. The model is based on the heterogeneous media approaches, semi-empirical laws of ignition and combustion, and data on the dependence of the detonation velocity on particle concentration. Formation of suboxides and incomplete combustion of aluminum are taken into account integrally. The dependence of the heat release of chemical reactions and the fraction of unburnt particles on the initial composition is determined from the solution of the stationary problem of the structure of the detonation wave. In the calculations of unsteady detonation flows, it is supposed to solve an additional equation for the spatial distribution of initial concentrations. The problems of initiation and development of cellular detonation in flat channels in suspensions of micron-sized aluminum particles are studied. Dependences of the cell size on particle concentration in uniform suspensions are determined. The flow patterns of cellular structures, the forms of the leading front, and the propagation velocities in channels with longitudinal or transversal gradients of particle concentration are analyzed.  相似文献   

3.
The problems of lifting and dispersing of a dust layer behind the propagating shock wave as well as ignition, combustion of coal particles and dust-layered detonation formation in a tube are numerically investigated. The layered detonation is formed at large distance from the place of the primary shock wave initiation (~100 diameters of the tube). The strong oblique transverse shocks caused by combustion zone were discovered. The acceleration of leading shock wave and dust-layered detonation formation are connected with increasing and intensification of combustion zone which strongly depends on arising system of the oblique waves due to the development of the dust layer instabilities and vice versa. In the applied model, the moving medium is treated as a two-phase, two-velocity and two-temperature continuum with mechanical and thermal interphase interaction. The numerical procedure is based on the finite-volume approach and is implemented for parallel computing. The results obtained are of interest for applications in predictive modelling of accidents in industrial systems with reactive dust.  相似文献   

4.
A modelling strategy has been developed for consequence analysis of medium and large scale gaseous detonation. The model is based on the solution of Euler equations with one-step chemistry. The Van Leer flux limited method which is a total variation diminishing scheme is used for shock capturing. Preliminary calculations were firstly conducted for small domains with fine grids which resolve the wave, relatively coarse grids which have less than 10 grids across the wave and coarse grids in which the minimum grid size is larger than the wave thickness to ensure that the reaction scheme has been properly tuned to capture the correct detonation pressure, temperature and velocity in the resolutions used in the different cases. The model was firstly tested against a medium scale detonation test in a shock tube with U-bends. Reasonably good agreement is achieved on detonation pressure and mean shock wave velocities at different measuring segments of the tube. Following the validation, the detonation of a hypothetical planar propane-air cloud is simulated. The predictions uncovered some interesting features of such large scale detonation phenomena which are of significance in the safety context, especially for accidental investigations. The findings from the present analysis are in line with the forensic evidence on damages in some historic accidents and challenges previous analysis of a major accident in which forensic evidence suggested localised detonation but was considered as the consequence of fire storms by the investigation team.  相似文献   

5.
Multidimensional time-dependent simulations were performed to study the interaction of a stoichiometric methane–air detonation with layers of coal dust. The simulations solved equations representing a Eulerian kinetic-theory-based granular multiphase model applicable to dense and dilute particle volume fractions. These equations were solved using a high-order Godunov-based method for compressible fluid dynamics. Two dust layer concentrations were considered: loose with an initial volume fraction of 1%, and dense with an initial volume fraction of 47%. Each layer was simulated with two types of dust: reactive coal and inert ash. Burning of the coal particles results in a coupled complex consisting of an accelerating shock leading a coal-dust flame. The overall structure of the shock–flame complex resembles that of a premixed fast flame with length scales on the order of several meters. The large length scales are direct results of time needed to lift, mix, heat, and autoignite the particle. The flame speeds are large and much larger than the gas-phase velocity. Large spikes of flame speed are characteristic of the 47% case. These spikes and high flame speed are caused by pockets of coal dust autoigniting ahead of the flame. The flame is choked in the 1% case due to the gas-phase products exceeding the sonic velocity with respect to the flame. The 47% case is choked due to attenuation of pressure waves as they propagate through particles. Inert layers of dust substantially reduce the overpressure, impulse, and speed produced by propagating blast wave. The results also show that loose layers of dust are far more dangerous than dense layers. The shock and flame are more strongly coupled for loose layers, propagate at higher velocity, and produce large overpressures and impulses.  相似文献   

6.
在可燃气体的输送、贮存、加工和使用过程中,容易发生可燃气体的燃烧和爆炸事故。文中基于有限体积方法,采用五阶WENO格式进行左右状态量的重构后,利用ROE格式进行空间离散,自行开发程序对甲烷氧气的气相爆轰波传播过程进行了数值研究。计算结果表明:在CH4质量分数为10%的混合气体中,高温高压气团可诱导气相发生爆轰,爆轰波以2133.3 m/s的速度传播。在带有障碍物的约束空间内,文中分析了障碍物不同高度、不同间距条件下爆轰波传播时波的绕射、马赫反射等现象,给出障碍物表面压力随时间变化历程和冲量值,揭示波与障碍物的相互作用机理以及由此引发流场的变化规律,为有效地控制可燃气体的燃烧速率、防治爆炸灾害的发生提供理论依据。  相似文献   

7.
An interaction of a detonation wave propagating in the cellular detonation mode with a cloud of inert particles is investigated numerically. The analysis of results allows the regimes of propagation of the heterogeneous plane Chapman–Jouguet and cellular detonations and their suppression to be identified. The influence of various parameters of the inert cloud is demonstrated. The critical length of the cloud sufficient for detonation suppression is determined. It is shown that the disperse composition and the nonuniform distribution of particles in the cloud are important parameters affecting the detonation propagation mode.  相似文献   

8.
Under study are the regimes of detonation propagation in channels with linear expansion filled with monodisperse mixtures of oxygen and ultrafine aluminum particles of various loading; the methods of numerical simulations are used. The detonation combustion of submicron aluminum particles is described within the semi-empirical model of reduced kinetics with due regard to the transition from the diffusion-limited regime of combustion to the kinetic one. Waves of both planar and developed cellular detonation are considered as initial conditions. The characteristics of the main flow regimes are obtained and described: the subcritical (detonation failure), critical (detonation failure in some part of the channel) and supercritical (continuous detonation propagation). The maps of flow regimes in suspensions of 200-nm – 400-nm particles are presented in the plane of parameters: the channel width, expansion angle. The obtained critical conditions are similar to those observed in the gas detonation. The critical channel width linearly depends on the expansion angle up to a first critical value (35°–38°). Behind the second critical value (50°), the channel width is independent on the expansion angle. Between these values, there is an interval of nonmonotonicity similar to the detonation of micro-sized suspensions of aluminum particles. The effect of particle loading on the critical conditions in poor mixtures appears in the form of a sharp increase in the critical channel width, if the mass concentration falls below 0.25.  相似文献   

9.
10.
The detonation processes in chemically active bubble liquids under elevated initial pressures are investigated theoretically. It is shown, that supersonic regimes of wave propagation can exist, if the initial pressure is relatively high and the volume fraction of the bubbles is relatively small. Characteristic values of the bubble detonation wave pressure at sub- and supersonic regimes differ by an order of magnitude.The principal possibility of detonation wave structure transformation in the case of propagation in the mixture with high initial pressure and longitudinal gradient of bubble volume fraction is predicted. The leading shock may transform into a smooth wave of compression.The Chapman-Jouguet conditions for self-sustaining supersonic bubble detonation wave is obtained.A model of shock induced single bubble dynamics and ignition taking into account the real properties of the liquid, inter-phase transition processes, mechanical mixing of phases, ignition delay and continuous shift of chemical equilibrium have been described. Calculations for the oxygen containing bubble in liquid cyclohexane have been performed.  相似文献   

11.
Dust dispersion from a layer is a complicated problem, which has not been completely solved yet, especially if an Eulerian–Eulerian approach has to be used to model the two-phase dusty flow. In previous investigation, a phenomenological model of the dust dispersion process from a layer was developed, but the evaluation of the model revealed some weaknesses. In the current paper, the model of the dust dispersion process was presented and three improvements of the model were studied: Saffman force, Magnus force and particles collisions. The implementation of Magnus and Saffman forces into the code did not improve the numerical results and it was shown that it had very little influence on the dust lifting process, in case the phenomenological model of the layer is used. Some explanations were proposed in the paper. Besides, an empirical model of particles collisions was also added to the code and its influence on the results was studied. It was shown that the particles collisions model improved the obtained results, but further modifications are to be studied in the future.  相似文献   

12.
High resolution numerical simulation of methane explosion in bend ducts   总被引:1,自引:0,他引:1  
In this paper we developed a parallel code, adopting a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method for the two-dimensional reactive Euler equations, to investigate the propagation process of methane explosion in bend ducts. In the simulations, an inverse Lax-Wendroff procedure is adopted to construct a high order boundary in order to treat the complex boundaries. The numerical results show that when the bend angle is 30° and 45°, it cannot inhibit the propagation of the detonation wave; while when the angle reaches 60° and 75°, the detonation wave finally attenuates to the shock wave. It indicates that the propagation of the detonation wave can be inhibited. Furthermore, the temperature and the pressure at the entrance of the bend are low. When the angle arrives at 90°, the detonation wave evolves into cellular detonation when it passes through the bend. When the angle is larger than 90°, the detonation wave dramatically attenuates at the diffracting point, and later some hot spots can be formed, which can ignite the combustible gas nearby. Thus the second explosion occurs and finally the detonation is formed. When the angle is larger than or equal to 90°, the temperature and the pressure at the entrance of the bend is too high that the rescue efforts in the methane explosion accidents will encounter great difficulties. Hence, the laneway with 60° and 75° bend can inhibit the propagation of the detonation wave, and the temperature and the pressure at the entrance of the bend is not too high as well. All the results above can provide an important basis for the design and optimization of the mine laneway.  相似文献   

13.
Suppression tests of oxyhydrogen gas explosions were performed in an explosion tube with five types of dry powder used as the suppressants. The experimental results showed that the powder with large dust cloud density and small radius has better suppression effect, which agrees well with previous correlative results. Moreover, our results also showed that particles with chemical activity and light material density, their suppression effect are more prominent than that of the inert particles with heavy density. To discover the detailed suppression process of dust powder, governing equations were developed based on the homogeneous reactive two-phase flow. The TVD scheme and the Lax–Wendroff–Rubin scheme were adopted to solve the reactive gas phase and particle phase, respectively. The time splitting technique was employed to handle the stiffness of the coupled equations. Our calculated results showed that the dust cloud has the suppression effect on the explosion of oxyhydrogen gas, and with the increase of dust cloud density or the decrease of particle diameter, its suppression effect become more evident, which is in good agreement with our experimental results, in addition, the numerical results showed that with the same particle diameter, the suppression performance is enhanced with the reduction in particle material density.  相似文献   

14.
为揭示煤与瓦斯突出过程中冲击波及瓦斯气流传播特性,针对这种突出做功随瓦斯压力、煤的普氏系数和煤的放散初速度变化的特征,运用气体动力学理论,建立冲击波超压、冲击瓦斯流速度与传播距离以及煤层瓦斯压力等参数的关系,计算不同超压下瓦斯气流传播伤害的范围。理论计算与现场测试结果表明,突出冲击波属惰性弱冲击波;波阵面上的超压传播伤害距离与突出时瓦斯膨胀的强度、巷道断面及巷道壁面的摩擦力和局部阻力等因素有关;冲击产生的高压瓦斯气流是造成巷道内大量人员窒息伤亡的主要诱因;突出能量瞬间释放没有补给,冲击波及瓦斯气流会在巷道阻力等因素作用下迅速衰减。  相似文献   

15.
煤矿主要采用隔爆水棚或岩粉棚来抑制瓦斯爆炸火焰传播,但此类技术仅针对一次性瓦斯爆炸,而缺乏对多次及连续瓦斯爆炸的有效阻隔爆手段。仅注重对燃烧波的淬熄作用,对造成很大破坏的冲击波的衰减效果不足。多孔介质的淬熄火焰和衰减冲击波的效能已得到国内外专家的重视,实验研究了多层丝网和多孔材料如泡沫铝和泡沫陶瓷的阻隔爆效果。泡沫陶瓷作为一种多孔介质,具有开孔率大、耐高温、抗冲击力强的优点。理论分析和实验研究表明,由于壁面的多次撞击效应,多孔介质可以有效地销毁瓦斯燃烧化学反应产生的自由基数量,抑制化学反应的放热,使化学反应不能自持进行,进而淬熄燃烧火焰传播;可以大幅衰减瓦斯爆炸的冲击波强度,起到同时淬熄燃烧火焰和衰减冲击波的作用。多孔介质有望成为煤矿井下一种新型的瓦斯爆炸阻隔爆材料和方法。  相似文献   

16.
井喷点火过程天然气爆炸后果分析   总被引:2,自引:0,他引:2  
井喷失控事故发生后,尽快点火是减少人员伤亡的最有效措施之一。然而,点火过程中一旦发生天然气爆炸,其可能的爆炸伤害范围、破坏范围以及是否在可接受风险范围,就成为决策能否点火的关键。本文应用蒸汽云爆炸的肿当量模型和冲击波峰值超压模型,提出了天然气井喷失控后,发生天然气爆炸的人员死亡区、重伤区和轻伤区的计算方法;假设井喷的天然气无阻流量,计算了可能的人员伤害范围,并对计算结果进行了分析。分析发现,在井喷失控后,最大限度地减少井喷失控时间,以及最大限度地防止天然气在某一区域的大量积聚,是减轻井喷失控天然气爆炸后果的最佳措施。  相似文献   

17.
易燃混合气体爆炸完全基元反应模型数值模拟   总被引:3,自引:0,他引:3  
采用完全基元反应模型和高精度ENO格式对易燃混合气体爆炸过程进行了数值研究,对H2/O2/Ar混合气体起爆和爆轰波传播过程的数值模拟结果表明,计算的爆轰波阵面参数和实验相当符合,对轰波反应区化学反应的研究表明,参与反应的不同组分具有不同类型的变化特征,这些特征为爆炸灾害的预防设计提供了线索。  相似文献   

18.
在多层金属丝网结构对瓦斯爆炸传播的抑制作用机理上建立了多层丝网结构抑燃抑爆的数学模型,表述了火焰传播参数、爆炸反应波参数与丝网结构参数之间的关系.  相似文献   

19.
The theory of stationary adiabatic and non-adiabatic ignition waves in magnesium aerosuspension is developed on the basis of the mathematical model based on two-velocity two-temperature approach of mechanics of heterogeneous media. Specifically, the conditions such that the particle cloud ignites under the action of an initiating shock wave (SW) are defined. An agreement between the adiabatic one-velocity model and the adiabatic two-velocity model on the ignition delay time for small particles is shown. Influence of particle size on this characteristic is compared for both models. Validation of the two-velocity model is performed on the basis of comparison with the experimental data. The unified formula for calculation of the induction period of the magnesium particle mixture in oxygen which takes into account its dependence on the SW Mach number and particle radius is found.  相似文献   

20.
爆炸冲击波在多级穿廊结构坑道内传播规律的数值分析   总被引:1,自引:0,他引:1  
数值模型尺寸参照总参工程兵科研三所所建的穿廊结构坑道实体模型,采用ANSYS/LS-DYNA建立三维穿廊端部不同开闭的数值模型,得出冲击波在多级穿廊结构坑道内的传播规律,并与长直坑道内爆炸冲击波传播规律进行对比分析。结果表明多级穿廊结构端部开放坑道对爆炸冲击波的削弱作用非常显著,一级穿廊结构削弱冲击波强度62%,级数越高,削弱效果越明显;端部封堵时冲击波反射效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号